Logical Foundations of Computer Science

Lecture 2: A proof primer

Tiago Cogumbreiro
On studying effectively for this course

Setup

1. Have CoqIDE available in a computer you have access to
2. Have `vol1.zip` extracted in a directory `you alone` have access to

Caveats

1. **There are no tests**, so no way to invest time later
2. In this course you'll **weekly** load of work, don't let it build up
3. Re-submitting a homework assignment will increase your next-week workload
4. Recall that the lowest grade of your homework assignments is ignored
On studying effectively for this course

Suggestions

- **Read the chapter before the class:**
 This way we can direct the class to specific details of a chapter, rather than a more topical end-to-end description of the chapter.

- **Attempt to write the exercises before the class:**
 We can guide a class to cover certain details of a difficult exercise.

- **Use the office hours and our online forum:** Coq is a unusual programming language, so you will get stuck simply because you are not familiar with the IDE or a quirk of the language
On studying effectively for this course

Homework structure

1. Open the homework file with CoqIDE: that file is the chapter we are covering
2. Read the chapter and fill in any exercise
3. To complete a homework assignment ensure you have 0 occurrences of Admitted

This information is available in our online forum.
Today we will...

- cover some proof techniques: rewriting terms, case analysis, and induction
- conclude chapters Basics.v and Induction.v
Homework 1

Basic.v is due September 12, Wednesday, 11:59pm EST

Submit it via email: Tiago.Cogumbreiro@umb.edu
An example

Example plus_0_4 : 0 + 5 = 4.
Proof.

How do we prove this?
An example

Example plus_0_4 : 0 + 5 = 4.
Proof.

How do we prove this?

- We cannot. This is unprovable, which means we are not able to write a script that proves this statement.
- Coq will not tell you that a statement is false.
Another example

Example plus_0_5 : 0 + 5 = 5.
Proof.

How do we prove this? We "know" it is true, but why do we know it is true?
Another example

Example plus_0_5 : 0 + 5 = 5.
Proof.

How do we prove this? We "know" it is true, but why do we know it is true?

There are two ways:

1. We can think about the definition of plus.
2. We can brute-force and try the tactics we know (simpl, reflexivity)

Fixpoint plus (n : nat) (m : nat) : nat :=
 match n with
 | 0 => m
 | S n' => S (plus n' m)
end.

Notation "x + y" := (plus x y) (at level 50, left associativity) : nat_scope.
Another example

Example plus_0_6 : 0 + 6 = 6.
Proof.

How do we prove this?
Another example

Example plus_0_6 : 0 + 6 = 6.
Proof.

How do we prove this?

The same as we proved plus_0_5. This result is true for any natural n!
Ranging over all elements of a set

Theorem \(\text{plus} _ \text{0} _ \text{n} : \forall n : \text{nat}, 0 + n = n \).

Proof.

\begin{verbatim}
intros n.
simpl.
reflexivity.
Qed.
\end{verbatim}

- **Theorem** is just an *alias* for **Example** and **Definition**.
- **forall** introduces a variable of a given type, eg **nat**; the logical statement must be true for all elements of the type of that variable.
- **Tactic** \text{intros} is the dual of **forall** in the tactics language.
Forall example

Given

1 subgoal

forall n : nat, 0 + n = n

and applying intros n yields

1 subgoal

n : nat

0 + n = n

The n is a variable name of your choosing.

Try replacing intros n by intros m.
simpl and reflexivity work under forall

1 subgoal
______________________________________(1/1)
forall n : nat, 0 + n = n

Applying simpl yields

1 subgoal
______________________________________(1/1)
forall n : nat, n = n

Applying reflexivity yields

No more subgoals.
reflexivity also simplifies terms

1 subgoal
______________________________________(1/1)
forall n : nat, 0 + n = n

Applying reflexivity yields

No more subgoals.
Summary

- `simpl` and `reflexivity` work under `forall` binders
- `simpl` only unfolds definitions of the `goal`; does not conclude a proof
- `reflexivity` concludes proofs and simplifies
Multiple pre-conditions in a lemma

Theorem plus_id_example : forall n m:nat,
 n = m ->
 n + n = m + m.
Proof.
 intros n.
 intros m.
Multiple pre-conditions in a lemma

Theorem plus_id_example : forall n m : nat,
 n = m ->
 n + n = m + m.
Proof.
 intros n.
 intros m.

yields

1 subgoal
n, m : nat
----------------------------------(1/1)
 n = m -> n + n = m + m
Multiple pre-conditions in a lemma

applying intros H yields

1 subgoal
n, m : nat
H : n = m
______________________________________(1/1)
n + n = m + m

How do we use H? New tactic: use rewrite \(\rightarrow \) H (lhs becomes rhs)

1 subgoal
n, m : nat
H : n = m
______________________________________(1/1)
m + m = m + m

How do we conclude? Can you write a Theorem that replicates the proof-state above?
How do we prove this example?

Theorem `plus_1_neq_0_firsttry : forall n : nat, beq_nat (plus n 1) 0 = false.**

Proof.

`intros n.``

yields

```
1 subgoal
n : nat
beq_nat (plus n 1) 0 = false
```
How do we prove this example?

Theorem plus_1_neq_0_firsttry : forall n : nat, beq_nat (plus n 1) 0 = false.

Proof.
 intros n.

yields

1 subgoal
n : nat
---------------------------(1/1)
beq_nat (plus n 1) 0 = false

Apply simpl and it does nothing. Apply reflexivity:

In environment
n : nat
Why does simpl fail?

Q: Why can't \texttt{beq_nat (n + 1)} be simplified? (Hint: inspect its definition.)
Why does simpl fail?

Q: Why can't \texttt{beq_nat} \((n + 1)\) be simplified? (Hint: inspect its definition.)

A: \texttt{beq_nat} expects the first parameter to be either \texttt{0} or \(\texttt{S }\texttt{?n}\), but we have an expression \(n + 1\) (or \texttt{plus n 1}).
Why does simpl fail?

Q: Why can't beq_nat (n + 1) be simplified? (Hint: inspect its definition.)

A: beq_nat expects the first parameter to be either 0 or S ?n, but we have an expression n + 1 (or plus n 1).

Q: Can we simplify plus n 1?
Why does simpl fail?

Q: Why can't `beq_nat (n + 1)` be simplified? (Hint: inspect its definition.)

A: `beq_nat` expects the first parameter to be either `0` or `S ?n`, but we have an expression `n + 1` (or `plus n 1`).

Q: Can we simplify `plus n 1`?

A: No because `plus` decreases on the first parameter, not on the second!
Case analysis (1/3)

Let us try to inspect value n. Use: `destruct n as [| n']`.

2 subgoals

\[\text{beq_nat (0 + 1) 0 = false} \]

\[\text{beq_nat (S n' + 1) 0 = false} \]

Now we have two goals to prove!

1 subgoal

\[\text{beq_nat (0 + 1) 0 = false} \]

How do we prove this?
Case analysis (2/3)

After we conclude the first goal we get:

This subproof is complete, but there are some unfocused goals:

beq_nat (S n' + 1) 0 = false

Use another bullet (-).

1 subgoal
n' : nat

beq_nat (S n' + 1) 0 = false

And prove the goal above as well.

Why can the latter be simplified?
Case analysis (3/3)

- Use: `destruct n as [| n']` when you want to explicitly name the variables being introduced.
- Otherwise, use: `destruct n` and let Coq automatically name the variables.

Using automatically generated variable names makes the proofs more brittle to change.
Basic.v

- New syntax: `forall` to range over all values of a type
- New syntax: `Theorem` and its relation with `Definition` and `Example`
- New tactic: `intros`
- Learn: interplay between `forall`, `simpl`, and `reflexivity`
- New syntax: `→` to represent implication
- New tactic: `rewrite` to replace terms using equality
- New tactic: `destruct` to perform case analysis
- New tactic: bullets (-, *, and +) and scopes ({} and { })
Compile Basic.v

CoqIDE:
- Open Basics.v. In the "Compile" menu, click on "Compile Buffer".

Console:
- make Basics.vo
Induction.v
Example: prove this lemma (1/4)

\textbf{Theorem} \ \texttt{plus_n_0} \ : \ \texttt{forall} \ \texttt{n:}\texttt{nat},
\n\begin{equation*}
\texttt{n} = \texttt{n + 0}.
\end{equation*}

\textbf{Proof}.
Example: prove this lemma (1/4)

Theorem plus_n_0 : forall n:nat,
 n = n + 0.
Proof.

Tactic simpl does nothing.
Example: prove this lemma (1/4)

Theorem plus_n_0 : forall n:nat,
 n = n + 0.

Proof.

Tactic simp does nothing. Tactic reflexivity fails.
Example: prove this lemma (1/4)

Theorem plus_n_0 : forall n:nat,
 n = n + 0.
Proof.

Tactic simpl does nothing. Tactic reflexivity fails. Apply destruct n.

2 subgoals

--- (1/2)
0 = 0 + 0

--- (2/2)
S n = S n + 0
Example: prove this lemma (2/4)

After proving the first, we get

1 subgoal
n : nat
______________________________________(1/1)
S n = S n + 0

Applying \texttt{simpl} yields:

1 subgoal
n : nat
______________________________________(1/1)
S n = S (n + 0)
Example: prove this lemma (2/4)

After proving the first, we get

```
1 subgoal
n : nat
---------------------------------------------(1/1)
S n = S n + 0
```

Applying `simpl` yields:

```
1 subgoal
n : nat
---------------------------------------------(1/1)
S n = S (n + 0)
```

Tactic `reflexivity` fails and there is nothing to rewrite.
We need an induction principle of \(\text{nat} \)

For some property \(P \) we want to prove.

- Show that \(P(0) \) holds.
- Given the induction hypothesis \(P(n) \), show that \(P(n + 1) \) holds.

Conclude that \(P(n) \) holds for all \(n \).
Example: prove this lemma (3/4)

Apply induction \(n \).

2 subgoals

\[
\begin{align*}
(1/2) & \quad 0 = 0 + 0 \\
(2/2) & \quad S n = S n + 0
\end{align*}
\]

How do we prove the first goal?
Compare induction \(n \) with destruct \(n \).
Example: prove this lemma (4/4)

After proving the first goal we get

1 subgoal
n : nat
IHn : n = n + 0

_________________________(1/1)
S n = S n + 0

applying \texttt{simpl} yields

1 subgoal
n : nat
IHn : n = n + 0

_________________________(1/1)
S n = S (n + 0)

How do we conclude this proof?
Intermediary results

Theorem mult_0_plus' : \(\forall\) n m : nat,
\((0 + n) \times m = n \times m\).

Proof.
\begin{align*}
\text{intros } n \ m. \\
\text{assert } (H: 0 + n = n). \{ \text{reflexivity.} \} \\
\text{rewrite } \rightarrow H. \\
\text{reflexivity. Qed.}
\end{align*}

- \(H\) is a variable name, you can pick whichever you like.
- Your intermediary result will capture all of the existing hypothesis.
- It may include \(\forall\).
- We use braces \{ and \} to prove a sub-goal.
Formal versus informal proofs

- The objective of a mechanical (formal) proofs is to appease the proof checker.
- The objective of an informal proof is to convince (logically) the reader.
- `ltac` proofs are imperative, assume the reader can step through
- In informal proofs we want to help the reader reconstruct the proof state.
An example of an Ltac proof

Theorem plus_assoc : forall n m p : nat,
 n + (m + p) = (n + m) + p.
Proof.
 intros n m p. induction n as [| n' IHn'].
 - reflexivity.

1. The proof follows by induction on \(n \).
An example of an Ltac proof

Theorem plus_assoc : \(\forall n \ m \ p : \text{nat}, \n + (m + p) = (n + m) + p. \)

Proof.
- intros n m p. induction n as [| n' IHn'].
 - reflexivity.
 - simpl. rewrite \rightarrow\ IHn'. reflexivity. Qed.

1. The proof follows by induction on \(n \).

2. In the base case, we have that \(n = 0 \). We need to show \(0 + (m + p) = 0 + m + p \), which follows by the definition of \(+ \).
An example of an \texttt{Ltac} proof

Theorem plus_assoc : \texttt{forall} n m p : \texttt{nat},
\[n + (m + p) = (n + m) + p. \]

Proof.
- \texttt{intros n m p. induction n as [_ n' IHn'].}
- \texttt{reflexivity.}
- \texttt{simpl. rewrite \rightarrow IHn'. reflexivity. Qed.}

1. The proof follows by induction on \(n \).

2. In the base case, we have that \(n = 0 \). We need to show \(0 + (m + p) = 0 + m + p \), which follows by the definition of \(+ \).

3. In the inductive case, we have \(n = \texttt{S} n' \) and must show \(\texttt{S} n' + (m + p) = \texttt{S} n' + m + p \).
 From the definition of \(+ \) it follows that \(\texttt{S} (n' + (m + p)) = \texttt{S} (n' + m + p) \).
 The proof concludes by applying the induction hypothesis \(n' + (m + p) = n' + m + p \).
Induction.v

- Learn: how to compile Basic.v
- New tactic: induction
- New tactic: assert
- Learn: formal vs informal proofs
Ltac vocabulary

- simpl
- reflexivity
- intros
- rewrite
- destruct
- induction
- assert