
CS720
Logical Foundations of Computer Science

Lecture 7: Logical connectives in Coq

Tiago Cogumbreiro

CS720: Lecture 7 ❧ Tiago Cogumbreiro 1 / 29

Poly.v

Due Tuesday, September 25, 11:59 EST

2 / 29

Tactics.v

Due Thursday, September 27, 11:59 EST

3 / 29

Logic.v

Due Thursday, October 4, 11:59 EST

4 / 29

What have we learned so far
Comparing if two expressions are equal syntactically: e1 = e2
Implication P �> Q
Universal quanti�er forall x, P

Is this all we can do?

CS720: Lecture 7 ❧ Tiago Cogumbreiro 5 / 29

What have we learned so far
Comparing if two expressions are equal syntactically: e1 = e2
Implication P �> Q
Universal quanti�er forall x, P

Is this all we can do? No.

We encoded predicates computationally:

In Basics.v we de�ned beq_nat: nat �> nat �> bool to compare if two naturals are equal.
In Basics.v we de�ned evenb: nat �> bool to check if a natural number is even

Computational predicates are limited in what they can describe (eg, functions in Coq have to be
total), and are not very easy to reason about (ie, they are meant to compute/execute, not build
logic statements).

CS720: Lecture 7 ❧ Tiago Cogumbreiro 5 / 29

Today we will…
Logical connectives in Coq

Why are we learning this?

The building blocks of any interesting property

P ∧Q P ∨Q

CS720: Lecture 7 ❧ Tiago Cogumbreiro 6 / 29

Typing equality
What is the type of an equality?

Check beq_nat 2 2 = true.

Check forall (n m : nat), n + m = m + n.

CS720: Lecture 7 ❧ Tiago Cogumbreiro 7 / 29

Typing equality
What is the type of an equality?

Check beq_nat 2 2 = true.

Check forall (n m : nat), n + m = m + n.

Both of these expressions have type Prop, for proposition.

CS720: Lecture 7 ❧ Tiago Cogumbreiro 7 / 29

Are all propositions provable?

CS720: Lecture 7 ❧ Tiago Cogumbreiro 8 / 29

Are all propositions provable?

No. How do you prove this proposition:

Check 0 = 1. (* Prints: 0 = 1: Prop *)

Goal 0 = 1.

Notice how we cannot conclude (write a proof for) a statement that does not hold.
In Coq, we must show evidence of what holds. (This is known as a constructive logic.)

CS720: Lecture 7 ❧ Tiago Cogumbreiro 8 / 29

Propositions are still expressions (1/3)

What is the type of ex0:

Definition ex0 �= beq_nat 2 2.

CS720: Lecture 7 ❧ Tiago Cogumbreiro 9 / 29

Propositions are still expressions (1/3)

What is the type of ex0:

Definition ex0 �= beq_nat 2 2.

What is the type of ex1? How can we use ex1?

Definition ex1 (n:nat) �= beq_nat 2 n = true.

For which n is ex1 n provable?

CS720: Lecture 7 ❧ Tiago Cogumbreiro 9 / 29

Propositions are still expressions (1/3)

What is the type of ex0:

Definition ex0 �= beq_nat 2 2.

What is the type of ex1? How can we use ex1?

Definition ex1 (n:nat) �= beq_nat 2 n = true.

For which n is ex1 n provable?

Lemma easy:
 forall n, n = 2 �> ex1 n.
Proof.

(Done in class.)
CS720: Lecture 7 ❧ Tiago Cogumbreiro 9 / 29

Propositions are still expressions (2/3)

What is the difference between ex1 and ex2?

Definition ex1 (n:nat) �= beq_nat 2 n = true.

Theorem ex2: forall (n:nat), beq_nat 2 n = true.

CS720: Lecture 7 ❧ Tiago Cogumbreiro 10 / 29

Propositions are still expressions (2/3)

What is the difference between ex1 and ex2?

Definition ex1 (n:nat) �= beq_nat 2 n = true.

Theorem ex2: forall (n:nat), beq_nat 2 n = true.

ex1 de�nes a position (Prop), ex2 is a theorem de�nition and is expecting a proof.

What is the relation between ex3 and ex1, ex2?

Definition ex3 (n:nat) : beq_nat 2 n = true.

CS720: Lecture 7 ❧ Tiago Cogumbreiro 10 / 29

Propositions are still expressions (2/3)

What is the difference between ex1 and ex2?

Definition ex1 (n:nat) �= beq_nat 2 n = true.

Theorem ex2: forall (n:nat), beq_nat 2 n = true.

ex1 de�nes a position (Prop), ex2 is a theorem de�nition and is expecting a proof.

What is the relation between ex3 and ex1, ex2?

Definition ex3 (n:nat) : beq_nat 2 n = true.

Recall that Theorem and Definition are synonyms!
Thus, ex2 and ex3 are the same

CS720: Lecture 7 ❧ Tiago Cogumbreiro 10 / 29

Propositions are still expressions (3/3)

What is the difference between ex3 and ex4?

Definition ex1 (n:nat) �= beq_nat 2 n = true.
Definition ex3 (n:nat) : beq_nat 2 n = true.

Theorem ex4: forall (n:nat), ex1 n.

CS720: Lecture 7 ❧ Tiago Cogumbreiro 11 / 29

Propositions are still expressions (3/3)

What is the difference between ex3 and ex4?

Definition ex1 (n:nat) �= beq_nat 2 n = true.
Definition ex3 (n:nat) : beq_nat 2 n = true.

Theorem ex4: forall (n:nat), ex1 n.

ex3 and ex4 are the same.

Are any of ex2, ex3, and ex4 provable?

CS720: Lecture 7 ❧ Tiago Cogumbreiro 11 / 29

Propositions are still expressions (3/3)

What is the difference between ex3 and ex4?

Definition ex1 (n:nat) �= beq_nat 2 n = true.
Definition ex3 (n:nat) : beq_nat 2 n = true.

Theorem ex4: forall (n:nat), ex1 n.

ex3 and ex4 are the same.

Are any of ex2, ex3, and ex4 provable?

No, because not all numbers are equal to 2.

CS720: Lecture 7 ❧ Tiago Cogumbreiro 11 / 29

Summary: Propositions are still expressions

forall versus arguments of a de�nition
De�nitions for propositions are just abbreviations for our own understanding

For instance, de�ne GreaterThan in terms of leb so that it is easier to read:

Definition GreaterThan x y �= leb x y = false.
(* which is the same as *)
Definition GreaterThan �= forall x y, leb x y = false.

CS720: Lecture 7 ❧ Tiago Cogumbreiro 12 / 29

Coq from the ground up

13 / 29

Inductive propositions
We have seen how to de�ne types inductively; propositions can also be de�ned inductively.

instead of Type we use Prop
the parameters are not just values, but propositions
the idea is to build your logical argument as structured data

We will now encode various logical connectives using inductive de�nitions.

CS720: Lecture 7 ❧ Tiago Cogumbreiro 14 / 29

Conjunction

P ∧Q

CS720: Lecture 7 ❧ Tiago Cogumbreiro 15 / 29

What is ?
1. What is the type of ?

P ∧Q

P

CS720: Lecture 7 ❧ Tiago Cogumbreiro 16 / 29

What is ?
1. What is the type of ? Prop
2. What is the type of ?

P ∧Q

P

Q

CS720: Lecture 7 ❧ Tiago Cogumbreiro 16 / 29

What is ?
1. What is the type of ? Prop
2. What is the type of ? Prop
3. What is the type of ?

P ∧Q

P

Q

∧

CS720: Lecture 7 ❧ Tiago Cogumbreiro 16 / 29

What is ?
1. What is the type of ? Prop
2. What is the type of ? Prop
3. What is the type of ? Prop �> Prop �> Prop

P ∧Q

P

Q

∧

CS720: Lecture 7 ❧ Tiago Cogumbreiro 16 / 29

What is ?
Let and represent :

and: Prop �> Prop �> Prop

Recall how we de�ned a pair:

Inductive pair (X:Type) (Y:Type) : Type �= ...

How would we de�ne and?

P ∧Q

∧

CS720: Lecture 7 ❧ Tiago Cogumbreiro 17 / 29

Conjunction
Inductive and (P Q : Prop) : Prop �=
| conj : P �> Q �> and P Q.

apply conj to solve a goal, inversion in a hypothesis
The /\ operator represents a logical conjunction (usually typeset with)
The split tactics is used to prove a goal of type ?X /\ ?Y, where ?X and ?Y are propositions

Notice that P /\ Q is a type (a proposition) and that conj is the only constructor of that type.

∧

CS720: Lecture 7 ❧ Tiago Cogumbreiro 18 / 29

Conjunction example
Example and_example : 3 + 4 = 7 /\ 2 * 2 = 4.
Proof.
 apply conj.

(Done in class.)

CS720: Lecture 7 ❧ Tiago Cogumbreiro 19 / 29

Conjunction example 1
More generally, we can show that if we have propositions and , we can conclude that we have

.

Goal forall A B : Prop, A �> B �> A /\ B.

A B

A ∧B

CS720: Lecture 7 ❧ Tiago Cogumbreiro 20 / 29

Conjunction in the hypothesis
Example and_in_conj :
 forall x y,
 3 + x = y /\ 2 * 2 = x �>
 x = 4 /\ y = 7.
Proof.
 intros x y Hconj.
 destruct Hconj as [Hleft Hright].

(Done in class.)

CS720: Lecture 7 ❧ Tiago Cogumbreiro 21 / 29

Conjunction example 2
Lemma correct_2 : forall A B : Prop, A /\ B �> A.
Proof.

Lemma correct_3 : forall A B : Prop, A /\ B �> B.
Proof.

(Done in class.)

CS720: Lecture 7 ❧ Tiago Cogumbreiro 22 / 29

Disjunction

P ∨Q

CS720: Lecture 7 ❧ Tiago Cogumbreiro 23 / 29

What is ?
1. What is the type of ?

P ∨Q

P

CS720: Lecture 7 ❧ Tiago Cogumbreiro 24 / 29

What is ?
1. What is the type of ? Prop
2. What is the type of ?

P ∨Q

P

Q

CS720: Lecture 7 ❧ Tiago Cogumbreiro 24 / 29

What is ?
1. What is the type of ? Prop
2. What is the type of ? Prop
3. What is the type of ?

P ∨Q

P

Q

∨

CS720: Lecture 7 ❧ Tiago Cogumbreiro 24 / 29

What is ?
1. What is the type of ? Prop
2. What is the type of ? Prop
3. What is the type of ? Prop �> Prop �> Prop

How can we de�ne an disjunction using an inductive proposition?

P ∨Q

P

Q

∨

CS720: Lecture 7 ❧ Tiago Cogumbreiro 24 / 29

Disjunction
Inductive or (A B : Prop) : Prop �=
 | or_introl : A �> or A B
 | or_intror : B �> or A B

apply or_introl or apply or_intror to goal; inversion to hypothesis
The \/ operator represents a logical disjunction (usually typeset with)
The left (right) tactics are used to prove a goal of type ?X \/ ?Y, replacing it with a new
goal ?X (?Y respectively)

∨

CS720: Lecture 7 ❧ Tiago Cogumbreiro 25 / 29

Disjunction example
Theorem or_1: forall A B : Prop,
 A �> A \/ B.

Theorem or_2: forall A B : Prop,
 B �> A \/ B.

(Done in class.)

CS720: Lecture 7 ❧ Tiago Cogumbreiro 26 / 29

Disjunction in the hypothesis
Tactics destruct can break a disjunction into its two cases.
Tactics inversion also breaks a disjunction, but leaves the original hypothesis in place.

Lemma or_example :
 forall n m : nat, n = 0 \/ m = 0 �> n * m = 0.
Proof.
 intros n m Hor.
 destruct Hor as [Heq | Heq].

CS720: Lecture 7 ❧ Tiago Cogumbreiro 27 / 29

Example
Theorem odd_or_even:
 forall n,
 evenb n = true \/ oddb n = true.

CS720: Lecture 7 ❧ Tiago Cogumbreiro 28 / 29

Example
Theorem odd_or_even:
 forall n,
 evenb n = true \/ oddb n = true.

Hint, prove this �rst:

Theorem evenb_flip:
 forall n,
 evenb n = negb (evenb (S n)).

CS720: Lecture 7 ❧ Tiago Cogumbreiro 28 / 29

Summary
Propositions as expressions
Inductive propositions
P ∧Q

P ∨Q

CS720: Lecture 7 ❧ Tiago Cogumbreiro 29 / 29

