
CS720
Logical Foundations of Computer Science

Lecture 5: tactics

Tiago Cogumbreiro

CS720: Lecture 5 ❧ Tiago Cogumbreiro 1 / 21

Today we will…
Recap Induction.v and Lists.v
Learn to apply lemmas (and not just rewrite)
Learn to invert an hypothesis
Learn to target hypothesis (and not just the goal)

Why are we learning this?

To make your proofs smaller/simpler

CS720: Lecture 5 ❧ Tiago Cogumbreiro 2 / 21

Recap: Induction.v
Theorem mul_l_s:
 forall n m,
 n * S m = n * m + n.
Proof.

(Done in class.)

CS720: Lecture 5 ❧ Tiago Cogumbreiro 3 / 21

Recap: List.v
Fixpoint count (v:nat) (s:bag) : nat. Admitted.

Fixpoint remove_one (v:nat) (s:bag) : bag. Admitted.

Theorem remove_does_not_increase_count: forall (s : bag),
 leb (count 0 (remove_one 0 s)) (count 0 s) = true.
Proof.

(Done in class).

CS720: Lecture 5 ❧ Tiago Cogumbreiro 4 / 21

Tactics.v

Due Thursday, September 27, 11:59 EST

5 / 21

Exercise 1: transitivity over equals

Theorem eq_trans : forall (T:Type) (x y z : T),
 x = y �> y = z �> x = z.
Proof.
 intros T x y z eq1 eq2.
 rewrite �> eq1.

yields

1 subgoal
T : Type
x, y, z : T
eq1 : x = y
eq2 : y = z
______________________________________(1/1)
y = z

How do we conclude this proof?
CS720: Lecture 5 ❧ Tiago Cogumbreiro 6 / 21

Exercise 1: transitivity over equals

Theorem eq_trans : forall (T:Type) (x y z : T),
 x = y �> y = z �> x = z.
Proof.
 intros T x y z eq1 eq2.
 rewrite �> eq1.

yields

1 subgoal
T : Type
x, y, z : T
eq1 : x = y
eq2 : y = z
______________________________________(1/1)
y = z

How do we conclude this proof? Yes, rewrite �> eq2. reflexivity. works.
CS720: Lecture 5 ❧ Tiago Cogumbreiro 6 / 21

Exercise 1: introducing apply
Apply takes an hypothesis/lemma to conclude the goal.

 apply eq2.
Qed.

apply takes ?X to conclude a goal ?X (resolves foralls in the hypothesis).

1 subgoal
T : Type
x, y, z : T
eq1 : x = y
eq2 : y = z
______________________________________(1/1)
y = z

CS720: Lecture 5 ❧ Tiago Cogumbreiro 7 / 21

Applying conditional hypothesis
apply uses an hypothesis/theorem of format H1 �> ... �> Hn �> G, then solves goal G, and
produces new goals H1, …, Hn.

Theorem eq_trans_2 : forall (T:Type) (x y z: T),
 (x = y �> y = z �> x = z) �> (* eq1 *)
 x = y �> (* eq2 *)
 y = z �> (* eq3 *)
 x = z.
Proof.
 intros T x y z eq1 eq2 eq3.
 apply eq1. (* x = y �> y = z �> x = z *)

(Done in class.)

CS720: Lecture 5 ❧ Tiago Cogumbreiro 8 / 21

Rewriting conditional hypothesis
apply uses an hypothesis/theorem of format H1 �> ... �> Hn �> G, then solves goal G, and
produces new goals H1, …, Hn.

Theorem eq_trans_3 : forall (T:Type) (x y z: T),
 (x = y �> y = z �> x = z) �> (* eq1 *)
 x = y �> (* eq2 *)
 y = z �> (* eq3 *)
 x = z.
Proof.
 intros T x y z eq1 eq2 eq3.
 rewrite �> eq1. (* x = y �> y = z �> x = z *)

(Done in class.)

Notice that there are 2 conditions in eq1, so we get 3 goals to solve.

CS720: Lecture 5 ❧ Tiago Cogumbreiro 9 / 21

Recap
What's the difference between reflexivity, rewrite, and apply?

1. reflexivity solves goals that can be simpli�ed as an equality like ?X = ?X
2. rewrite �> H takes an hypothesis H of type H1 �> ... �> Hn �> ?X = ?Y, �nds any sub-term

of the goal that matches ?X and replaces it by ?Y; it also produces goals H1,…, Hn. rewrite does
not care about what your goal is, just that the goal must contain a pattern ?X.

3. apply H takes an hypothesis H of type H1 �> ... �> Hn �> G and solves goal G; it creates
goals H1, …, Hn.

CS720: Lecture 5 ❧ Tiago Cogumbreiro 10 / 21

Apply with/Rewrite with
Theorem eq_trans_nat : forall (x y z: nat),
 x = 1 �>
 x = y �>
 y = z �>
 z = 1.
Proof.
 intros x y z eq1 eq2 eq3.
 assert (eq4: x = z). {
 apply eq_trans.

outputs

Unable to find an instance for the variable y.

We can supply the missing arguments using the keyword with: apply eq_trans with (y�=y).

Can we solve the same theorem but use rewrite instead?
CS720: Lecture 5 ❧ Tiago Cogumbreiro 11 / 21

Symmetry
What about this exercise?

Theorem eq_trans_nat : forall (x y z: nat),
 x = 1 �>
 x = y �>
 y = z �>
 1 = z.
Proof.
 intros x y z eq1 eq2 eq3.
 assert (eq4: x = z). {

CS720: Lecture 5 ❧ Tiago Cogumbreiro 12 / 21

Symmetry
What about this exercise?

Theorem eq_trans_nat : forall (x y z: nat),
 x = 1 �>
 x = y �>
 y = z �>
 1 = z.
Proof.
 intros x y z eq1 eq2 eq3.
 assert (eq4: x = z). {

We can rewrite a goal ?X = ?Y into ?Y = ?X with symmetry.

CS720: Lecture 5 ❧ Tiago Cogumbreiro 12 / 21

Apply in example
Theorem silly3' : forall (n : nat),
 (beq_nat n 5 = true �> beq_nat (S (S n)) 7 = true) �>
 true = beq_nat n 5 �>
 true = beq_nat (S (S n)) 7.
Proof.
 intros n eq H.
 symmetry in H.
 apply eq in H.

(Done in class.)

CS720: Lecture 5 ❧ Tiago Cogumbreiro 13 / 21

Targetting hypothesis
rewrite �> H1 in H2
symmetry in H
apply H1 in H2

CS720: Lecture 5 ❧ Tiago Cogumbreiro 14 / 21

Forward vs backward reasoning
If we have a theorem L: C1 �> C2 �> G:

Goal takes last: apply to goal of type G and replaces G by C1 and C2
Assumption takes �rst: apply to hypothesis L to an hypothesis H: C1 and rewrites H:C2 �> G

Proof styles:

Forward reasoning: (apply in hypothesis) manipulate the hypothesis until we reach a goal.
Standard in math textbooks.
Backward reasoning: (apply to goal) manipulate the goal until you reach a state where you can
apply the hypothesis.
Idiomatic in Coq.

CS720: Lecture 5 ❧ Tiago Cogumbreiro 15 / 21

Recall our encoding of natural numbers

Inductive nat : Type �=
 | O : nat
 | S : nat �> nat.

1. Does the equation S n = 0 hold? Why?

CS720: Lecture 5 ❧ Tiago Cogumbreiro 16 / 21

Recall our encoding of natural numbers

Inductive nat : Type �=
 | O : nat
 | S : nat �> nat.

1. Does the equation S n = 0 hold? Why?
No the constructors are implicitly disjoint.

2. If S n = S m, can we conclude something about the relation between n and m?

CS720: Lecture 5 ❧ Tiago Cogumbreiro 16 / 21

Recall our encoding of natural numbers

Inductive nat : Type �=
 | O : nat
 | S : nat �> nat.

1. Does the equation S n = 0 hold? Why?
No the constructors are implicitly disjoint.

2. If S n = S m, can we conclude something about the relation between n and m?
Yes, constructor S is injective. That is, if S n = S m, then n = m holds.

These two principles are available to all inductive de�nitions! How do we use these two
properties in a proof?

CS720: Lecture 5 ❧ Tiago Cogumbreiro 16 / 21

Proving that S is injective (1/2)

Theorem S_injective : forall (n m : nat),
 S n = S m �>
 n = m.
Proof.
 intros n m eq1.
 inversion eq1.

If we run inversion, we get:

1 subgoal
n, m : nat
eq1 : S n = S m
H0 : n = m
______________________________________(1/1)
m = m

CS720: Lecture 5 ❧ Tiago Cogumbreiro 17 / 21

Injectivity in constructors
Theorem S_injective : forall (n m : nat),
 S n = S m �>
 n = m.
Proof.
 intros n m eq1.
 inversion eq1 as [eq2].

If you want to name the generated hypothesis you must �gure out the destruction pattern and use
as [...]. For instance, if we run inversion eq1 as [eq2], we get:

1 subgoal
n, m : nat
eq1 : S n = S m
eq2 : n = m
______________________________________(1/1)
m = m

CS720: Lecture 5 ❧ Tiago Cogumbreiro 18 / 21

Disjoint constructors
Theorem beq_nat_0_l : forall n,
 beq_nat 0 n = true �> n = 0.
Proof.
 intros n eq1.
 destruct n.

(To do in class.)

CS720: Lecture 5 ❧ Tiago Cogumbreiro 19 / 21

Principle of explosion
Ex falso (sequitur) quodlibet

inversion concludes absurd hypothesis, where there is an equality between different constructors.
Use inversion eq1 to conclude the proof below.

1 subgoal
n : nat
eq1 : false = true
______________________________________(1/1)
S n = 0

CS720: Lecture 5 ❧ Tiago Cogumbreiro 20 / 21

What we learned…
Tactics.v

Exploding principle
Forward and backward proof styles
New tactics: apply H and apply H in
Differences between apply and rewrite
New tactics: symmetry
New capability: rewrite ... in ...
New capability: simpl in ...
Constructors are disjoint and injective

CS720: Lecture 5 ❧ Tiago Cogumbreiro 21 / 21

