
CS720
Logical Foundations of Computer Science

Lecture 1: course structure, Coq basics

Tiago Cogumbreiro

CS720: Lecture 1 ❧ Tiago Cogumbreiro 1 / 37

About the course
Classes: Tuesday & Thursday
12:30noon to 1:45pm at S-3-028
Of�ce hours: Tuesday & Thursday
2:30pm to 4:00pm at S-3-088
Course web page: piazza.com/umb/fall2018/cs720/home

CS720: Lecture 1 ❧ Tiago Cogumbreiro 2 / 37

https://piazza.com/umb/fall2018/cs720/home

Grading
Homework: 75%
Presentation: 15%
Participation: 10%

CS720: Lecture 1 ❧ Tiago Cogumbreiro 3 / 37

Homework (75%)
No late homework. Late homework = 0 points.
Homework can be resubmitted up to one week. Final grade is the average of both submissions.
Your lowest homework score will be dropped.
Homework is your personal individual work.

It is acceptable to discuss the concept in general terms, but unacceptable to discuss speci�c
solutions to any homework assignment.

CS720: Lecture 1 ❧ Tiago Cogumbreiro 4 / 37

Autograding
Work is graded automatically. If Coq cannot check your homework, then your grade is 0
points.
Use Admitted to allow for incomplete proofs and de�nitions.

CS720: Lecture 1 ❧ Tiago Cogumbreiro 5 / 37

Presentation (15%)
Choose one:

1. One chapter of the textbook to the class (60 minutes).
The instructor will still publish the slides of that chapter.

2. One paper on the subject of formalizing the semantics of a programming language or system
(20 minutes presentation).
The student may suggest a paper (or request one suggestion).

CS720: Lecture 1 ❧ Tiago Cogumbreiro 6 / 37

Participation (10%)
Each reasonable student intervention (in the class or online) yields 1 point. If the student reaches
14 points, they are graded the full mark of participation.

CS720: Lecture 1 ❧ Tiago Cogumbreiro 7 / 37

Textbooks
Logical Foundations (Software Foundations - Volume 1). Benjamin C. Pierce, et al. 2017.
Version 5.3.
Programming Languages Foundations (Software Foundations - Volume 2). Benjamin C.
Pierce,et al. 2017. Version 5.3.

Recommended

Types and programming languages. Benjamin C. Pierce. 2002.

Software foundations @ YouTube

Oregon PL Summer School Archives (in particular: 2013, 2014,)

CS720: Lecture 1 ❧ Tiago Cogumbreiro 8 / 37

https://www.seas.upenn.edu/~cis500/current/sf/lf-current/index.html
https://www.seas.upenn.edu/~cis500/current/sf/plf-current/index.html
https://mitpress.mit.edu/books/types-and-programming-languages
https://www.youtube.com/watch?v=KKrD4JcfW90&list=PLGCr8P_YncjUT7gXUVJWSoefQ40gTOz89
https://www.cs.uoregon.edu/research/summerschool/archives.html
https://www.cs.uoregon.edu/research/summerschool/summer13/curriculum.html
https://www.cs.uoregon.edu/research/summerschool/summer14/curriculum.html

Suggested background
CS 450: The Structure of Higher Level Languages
CS 451: Compilers

MATH 114QR MATH 115 MATH 125MATH 129 MATH 130

CS 114L

IT 114L

MATH 140

CS 110

CS 210L

MATH 260

CS 310

MATH 320LMATH 360 MATH 470

CS 420 CS 450 CS 622

CS 720

CS 240

CS 115L

CS 119 CS 220 CS 451

suggested suggested

CS720: Lecture 1 ❧ Tiago Cogumbreiro 9 / 37

https://www.cs.umb.edu/academics/courses/CS450/
https://www.cs.umb.edu/academics/courses/CS451/

Programming language semantics
Describes a computation model
De�nes the set of possible behaviors through some primitives
Mathematically precise properties of a computation model

CS720: Lecture 1 ❧ Tiago Cogumbreiro 10 / 37

Bird's eye view
Here is what we will learn

CS720: Lecture 1 ❧ Tiago Cogumbreiro 11 / 37

Imperative program
 let division (a b: int) : int
 =
 let q = ref 0 in
 let r = ref a in
 while !r �� b do
 q �= !q + 1;
 r �= !r - b
 done;
 !q

Examples: OCaml, F#, ReasonML

CS720: Lecture 1 ❧ Tiago Cogumbreiro 12 / 37

https://ocaml.org/
https://fsharp.org/
https://reasonml.github.io/

Specifying a functional language
Language grammar

Evaluation rules

t ::= x ∣ v ∣ t t v ::= λx : T .t T ::= T → T ∣ unit

 (E-app1) (E-app2)
t t ⟶ t t 1 2 1

′
2

t ⟶ t 1 1
′

t t ⟶ t t 1 2 1 2
′

t ⟶ t 2 2
′

(λx : T .t) v ⟶11 12 2 [x ↦ v]t (E-abs)2 12

CS720: Lecture 1 ❧ Tiago Cogumbreiro 13 / 37

Specifying a functional language
Type checking rules

 (T-var) (T-abs)
Γ ⊢ x : T

Γ(x) = T

Γ ⊢ λx : T .t : T → T 1 2 1 2

Γ[x ↦ T] ⊢ t : T 1 2 2

 (T-app)
Γ ⊢ λx : T .t : T → T 1 2 1 2

Γ ⊢ t : T → T Γ ⊢ t : T 1 11 12 2 11

CS720: Lecture 1 ❧ Tiago Cogumbreiro 14 / 37

Mathematically precise properties
Progress

Any valid program is either a value or can evaluate.
If , then either is a value, or there exists some such that .

Subject reduction

The validity of a program is preserved while evaluating it.
If and , then .

Can you give an example of a property?

Γ ⊢ t : T t t′ t ⟶ t′

Γ ⊢ t : T t ⟶ t′ Γ ⊢ t :′ T

CS720: Lecture 1 ❧ Tiago Cogumbreiro 15 / 37

Pre- and post-conditions
let division (a b: int) : int
 requires { true }
 ensures { exists r: int. a = b * result + r /\ 0 �� r < b }
=
 let q = ref 0 in
 let r = ref a in
 while !r �� b do
 invariant { true }
 q �= !q + 1;
 r �= !r - b
 done;
 !q

Examples: WhyML, Dafny.

CS720: Lecture 1 ❧ Tiago Cogumbreiro 16 / 37

http://why3.lri.fr/
https://www.microsoft.com/en-us/research/project/dafny-a-language-and-program-verifier-for-functional-correctness/

What we will learn in this course
Course summary

Speci�cation: logical reasoning, describing program behavior

Abstraction: capturing the fundamentals, thinking from �rst principles

Testing: unit and property testing

CS720: Lecture 1 ❧ Tiago Cogumbreiro 17 / 37

: Part 1
A primer on the programming language Coq

We will learn the core principles behind Coq

CS720: Lecture 1 ❧ Tiago Cogumbreiro 18 / 37

Enumerated type
A data type where the user speci�es the various distinct values that inhabit the type.

Examples?

CS720: Lecture 1 ❧ Tiago Cogumbreiro 19 / 37

Enumerated type
A data type where the user speci�es the various distinct values that inhabit the type.

Examples?

boolean
4 suits of cards
byte
int32
int64

CS720: Lecture 1 ❧ Tiago Cogumbreiro 19 / 37

Declare an enumerated type
Inductive day : Type �=
 | monday : day
 | tuesday : day
 | wednesday : day
 | thursday : day
 | friday : day
 | saturday : day
 | sunday : day.

Inductive de�nes an (enumerated) type by cases.
The type is named day and declared as a : Type (Line 1).
Enumerated types are delimited by the assignment operator (�=) and a dot (.).
Type day consists of 7 cases, each of which is is tagged with the type (day).

CS720: Lecture 1 ❧ Tiago Cogumbreiro 20 / 37

Printing to the standard output
Compute prints the result of an expression (terminated with dot):

Compute monday.

prints

 = tuesday
 : day

CS720: Lecture 1 ❧ Tiago Cogumbreiro 21 / 37

Interacting with the outside world
Programming in Coq is different most popular programming paradigms
Programming is an interactive development process
The IDE is very helpful: work�ow similar to using a debugger
It's a REPL on steroids!
Compute evaluates an expression, similar to printf

CS720: Lecture 1 ❧ Tiago Cogumbreiro 22 / 37

Inspecting an enumerated type
match d with
| monday �> tuesday
| tuesday �> wednesday
| wednesday �> thursday
| thursday �> friday
| friday �> monday
| saturday �> monday
| sunday �> monday
end

CS720: Lecture 1 ❧ Tiago Cogumbreiro 23 / 37

Inspecting an enumerated type
match d with
| monday �> tuesday
| tuesday �> wednesday
| wednesday �> thursday
| thursday �> friday
| friday �> monday
| saturday �> monday
| sunday �> monday
end

match performs pattern matching on variable d.
Each pattern-match is called a branch; the branches are delimited by keywords with and end.
Each branch is pre�xed by a mid-bar (|) (�>), a pattern (eg, monday), an arrow (�>), and a
return value

CS720: Lecture 1 ❧ Tiago Cogumbreiro 23 / 37

Pattern matching example
Compute match monday with
| monday �> tuesday
| tuesday �> wednesday
| wednesday �> thursday
| thursday �> friday
| friday �> monday
| saturday �> monday
| sunday �> monday
end.

CS720: Lecture 1 ❧ Tiago Cogumbreiro 24 / 37

Create a function
Definition next_weekday (d:day) : day �=
 match d with
 | monday �> tuesday
 | tuesday �> wednesday
 | wednesday �> thursday
 | thursday �> friday
 | friday �> monday
 | saturday �> monday
 | sunday �> monday
 end.

CS720: Lecture 1 ❧ Tiago Cogumbreiro 25 / 37

Create a function
Definition next_weekday (d:day) : day �=
 match d with
 | monday �> tuesday
 | tuesday �> wednesday
 | wednesday �> thursday
 | thursday �> friday
 | friday �> monday
 | saturday �> monday
 | sunday �> monday
 end.

Definition is used to declare a function.
In this case next_weekday has one parameter d of type day and returns (:) a value of type day.
Between the assignment operator (�=) and the dot (.), we have the body of the function.

CS720: Lecture 1 ❧ Tiago Cogumbreiro 25 / 37

Example 2
Compute (next_weekday friday).

yields (Message pane)

 = monday
 : day

next_weekday friday is the same as monday (after evaluation)

CS720: Lecture 1 ❧ Tiago Cogumbreiro 26 / 37

Your �rst proof
Example test_next_weekday:
 next_weekday (next_weekday saturday) = tuesday.
Proof.
 simpl. (* simplify left-hand side *)
 reflexivity. (* use reflexivity since we have tuesday = tuesday *)
Qed.

CS720: Lecture 1 ❧ Tiago Cogumbreiro 27 / 37

Your �rst proof
Example test_next_weekday:
 next_weekday (next_weekday saturday) = tuesday.
Proof.
 simpl. (* simplify left-hand side *)
 reflexivity. (* use reflexivity since we have tuesday = tuesday *)
Qed.

Example pre�xes the name of the proposition we want to prove.
The return type (:) is a (logical) proposition stating that two values are equal (after
evaluation).
The body of function test_next_weekday uses the ltac proof language.
The dot (.) after the type puts us in proof mode. (Read as "de�ned below".)
This is essentially a unit test.

CS720: Lecture 1 ❧ Tiago Cogumbreiro 27 / 37

Ltac: Coq's proof language
ltac is imperative! You can step through the state with CoqIDE

Proof begins an ltac-scope, yielding

1 subgoal
______________________________________(1/1)
next_weekday (next_weekday saturday) = tuesday

Tactic simpl evaluates expressions in a goal (normalizes them)

CS720: Lecture 1 ❧ Tiago Cogumbreiro 28 / 37

Ltac: Coq's proof language
1 subgoal
______________________________________(1/1)
tuesday = tuesday

reflexivity solves a goal with a pattern ?X = ?X

No more subgoals.

Qed ends an ltac-scope and ensures nothing is left to prove

CS720: Lecture 1 ❧ Tiago Cogumbreiro 29 / 37

Function types
Use Check to print the type of an expression:

Check next_weekday.

which outputs

next_weekday
 : day �> day

Function type day �> day takes one value of type day and returns a value of type day.

CS720: Lecture 1 ❧ Tiago Cogumbreiro 30 / 37

Compound types
Enumerated types are very simple. You can think of them as a typed collection of constants. We
call each enumerated value a constructor.

 Inductive rgb : Type �=
 | red : rgb
 | green : rgb
 | blue : rgb.

CS720: Lecture 1 ❧ Tiago Cogumbreiro 31 / 37

Compound types
Enumerated types are very simple. You can think of them as a typed collection of constants. We
call each enumerated value a constructor.

 Inductive rgb : Type �=
 | red : rgb
 | green : rgb
 | blue : rgb.

A compound type builds on other existing types. Their constructors accept multiple parameters,
like functions do.

 Inductive color : Type �=
 | black : color
 | white : color
 | primary : rgb �> color.

CS720: Lecture 1 ❧ Tiago Cogumbreiro 31 / 37

Manipulating compound values
 Definition monochrome (c : color) : bool �=
 match c with
 | black �> true
 | white �> true
 | primary p �> false
 end.

CS720: Lecture 1 ❧ Tiago Cogumbreiro 32 / 37

Manipulating compound values
 Definition monochrome (c : color) : bool �=
 match c with
 | black �> true
 | white �> true
 | primary p �> false
 end.

We can use the place-holder keyword _ to mean a variable we do not mean to use.

 Definition monochrome (c : color) : bool �=
 match c with
 | black �> true
 | white �> true
 | primary _ �> false
 end.

CS720: Lecture 1 ❧ Tiago Cogumbreiro 32 / 37

Compound types
Allows you to: type-tag, �xed-number of values

CS720: Lecture 1 ❧ Tiago Cogumbreiro 33 / 37

Inductive types
How do we describe arbitrarily large/composed values?

CS720: Lecture 1 ❧ Tiago Cogumbreiro 34 / 37

Inductive types
How do we describe arbitrarily large/composed values?

Here's the de�nition of natural numbers, as found in the standard library:

Inductive nat : Type �=
 | O : nat
 | S : nat �> nat.

O is a constructor of type nat.
Think of the numeral 0.

If n is an expression of type nat, then S n is also an expression of type nat.
Think of expression n + 1.

What's the difference between nat and uint32?

CS720: Lecture 1 ❧ Tiago Cogumbreiro 34 / 37

Recursive functions
Recursive functions are declared differently with Fixpoint, rather than Definition.

Fixpoint evenb (n:nat) : bool �=
 match n with
 | O �> true
 | S O �> false
 | S (S n') �> evenb n'
 end.

Using Definition instead of Fixpoint will throw the following error:

The reference evenb was not found in the current environment.

Not all recursive functions can be described. Coq has to understand that one value is getting
"smaller."

All functions must be total: all inputs must produce one output. All functions must terminate.
CS720 L t 1 ❧ Ti C b i 35 / 37

CS720 L t 1 ❧ Ti C b i 35 / 37

Basic.v
New syntax: Definition declares a non-recursive function
New syntax: Compute evaluates an expression and outputs the result + type
New syntax: Check prints the type of an expression
New syntax: Inductive de�nes inductive data structures
New syntax: Fixpoint declares a (possibly) recursive function
New syntax: match performs pattern matching on a value
New tactic: simpl evaluates functions if possible
New tactic: reflexivity concludes a goal ?X = ?X

CS720: Lecture 1 ❧ Tiago Cogumbreiro 36 / 37

Ltac vocabulary
simpl
reflexivity

CS720: Lecture 1 ❧ Tiago Cogumbreiro 37 / 37

https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.simpl
https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.reflexivity

