
CS720
Logical Foundations of Computer Science

Lecture 2: A proof primer

Tiago Cogumbreiro

CS720: Lecture 2 ❧ Tiago Cogumbreiro 1 / 34

On studying effectively for this course
Setup

1. Have CoqIDE available in a computer you have access to
2. Have vol1.zip extracted in a directory you alone have access to

Caveats

1. There are no tests, so no way to invest time later
2. In this course you'll weekly load of work, don't let it build up
3. Re-submitting a homework assignment will increase your next-week workload
4. Recall that the lowest grade of your homework assignments is ignored

CS720: Lecture 2 ❧ Tiago Cogumbreiro 2 / 34

https://piazza.com/class_profile/get_resource/jlme2htueumi8/jloboxga8zj6lw

On studying effectively for this course
Suggestions

Read the chapter before the class:
This way we can direct the class to speci�c details of a chapter,
rather than a more topical end-to-end description of the chapter.
Attempt to write the exercises before the class:
We can guide a class to cover certain details of a dif�cult exercise.
Use the of�ce hours and our online forum: Coq is a unusual programming language, so you
will get stuck simply because you are not familiar with the IDE or a quirk of the language

CS720: Lecture 2 ❧ Tiago Cogumbreiro 3 / 34

On studying effectively for this course
Homework structure

1. Open the homework �le with CoqIDE: that �le is the chapter we are covering
2. Read the chapter and �ll in any exercise
3. To complete a homework assignment ensure you have 0 occurrences of Admitted

This information is available in our online forum.

CS720: Lecture 2 ❧ Tiago Cogumbreiro 4 / 34

https://piazza.com/class/jlme2htueumi8?cid=7

Today we will…
cover some proof techniques: rewriting terms, case analysis, and induction
conclude chapters Basics.v and Induction.v

CS720: Lecture 2 ❧ Tiago Cogumbreiro 5 / 34

Homework 1
Basic.v is due September 12, Wednesday, 11:59pm EST

Submit it via email: Tiago.Cogumbreiro@umb.edu

CS720: Lecture 2 ❧ Tiago Cogumbreiro 6 / 34

An example
Example plus_O_4 : 0 + 5 = 4.
Proof.

How do we prove this?

CS720: Lecture 2 ❧ Tiago Cogumbreiro 7 / 34

An example
Example plus_O_4 : 0 + 5 = 4.
Proof.

How do we prove this?

We cannot. This is unprovable, which means we are not able to write a script that proves this
statement.
Coq will not tell you that a statement is false.

CS720: Lecture 2 ❧ Tiago Cogumbreiro 7 / 34

Another example
Example plus_O_5 : 0 + 5 = 5.
Proof.

How do we prove this? We "know" it is true, but why do we know it is true?

CS720: Lecture 2 ❧ Tiago Cogumbreiro 8 / 34

Another example
Example plus_O_5 : 0 + 5 = 5.
Proof.

How do we prove this? We "know" it is true, but why do we know it is true?

There are two ways:

1. We can think about the de�nition of plus.
2. We can brute-force and try the tactics we know (simpl, reflexivity)

Fixpoint plus (n : nat) (m : nat) : nat �=
 match n with
 | 0 �> m
 | S n' �> S (plus n' m)
 end.

Notation "x + y" �= (plus x y) (at level 50, left associativity) : nat_scope.

Another example
Example plus_O_6 : 0 + 6 = 6.
Proof.

How do we prove this?

CS720: Lecture 2 ❧ Tiago Cogumbreiro 9 / 34

Another example
Example plus_O_6 : 0 + 6 = 6.
Proof.

How do we prove this?

The same as we proved plus_0_5. This result is true for any natural n!

CS720: Lecture 2 ❧ Tiago Cogumbreiro 9 / 34

Ranging over all elements of a set
Theorem plus_O_n : forall n : nat, 0 + n = n.
Proof.
 intros n.
 simpl.
 reflexivity.
Qed.

Theorem is just an alias for Example and Definition.
forall introduces a variable of a given type, eg nat; the logical statement must be true for all
elements of the type of that variable.
Tactic intros is the dual of forall in the tactics language

CS720: Lecture 2 ❧ Tiago Cogumbreiro 10 / 34

Forall example
Given

1 subgoal
______________________________________(1/1)
forall n : nat, 0 + n = n

and applying intros n yields

1 subgoal
n : nat
______________________________________(1/1)
0 + n = n

The n is a variable name of your choosing.

Try replacing intros n by intros m.
CS720: Lecture 2 ❧ Tiago Cogumbreiro 11 / 34

CS720: Lecture 2 ❧ Tiago Cogumbreiro 11 / 34

simpl and reflexivity work under forall
1 subgoal
______________________________________(1/1)
forall n : nat, 0 + n = n

Applying simpl yields

1 subgoal
______________________________________(1/1)
forall n : nat, n = n

Applying reflexivity yields

No more subgoals.

CS720: Lecture 2 ❧ Tiago Cogumbreiro 12 / 34

reflexivity also simpli�es terms
1 subgoal
______________________________________(1/1)
forall n : nat, 0 + n = n

Applying reflexivity yields

No more subgoals.

CS720: Lecture 2 ❧ Tiago Cogumbreiro 13 / 34

Summary
simpl and reflexivity work under forall binders
simpl only unfolds de�nitions of the goal; does not conclude a proof
reflexivity concludes proofs and simpli�es

CS720: Lecture 2 ❧ Tiago Cogumbreiro 14 / 34

Multiple pre-conditions in a lemma
Theorem plus_id_example : forall n m:nat,
 n = m �>
 n + n = m + m.
Proof.
 intros n.
 intros m.

CS720: Lecture 2 ❧ Tiago Cogumbreiro 15 / 34

Multiple pre-conditions in a lemma
Theorem plus_id_example : forall n m:nat,
 n = m �>
 n + n = m + m.
Proof.
 intros n.
 intros m.

yields

1 subgoal
n, m : nat
______________________________________(1/1)
n = m �> n + n = m + m

CS720: Lecture 2 ❧ Tiago Cogumbreiro 15 / 34

Multiple pre-conditions in a lemma
applying intros H yields

1 subgoal
n, m : nat
H : n = m
______________________________________(1/1)
n + n = m + m

How do we use H? New tactic: use rewrite �> H (lhs becomes rhs)

1 subgoal
n, m : nat
H : n = m
______________________________________(1/1)
m + m = m + m

How do we conclude? Can you write a Theorem that replicates the proof-state above?
CS720: Lecture 2 ❧ Tiago Cogumbreiro 16 / 34

How do we prove this example?
Theorem plus_1_neq_0_firsttry : forall n : nat,
 beq_nat (plus n 1) O = false.
Proof.
 intros n.

yields

1 subgoal
n : nat
______________________________________(1/1)
beq_nat (plus n 1) O = false

CS720: Lecture 2 ❧ Tiago Cogumbreiro 17 / 34

How do we prove this example?
Theorem plus_1_neq_0_firsttry : forall n : nat,
 beq_nat (plus n 1) O = false.
Proof.
 intros n.

yields

1 subgoal
n : nat
______________________________________(1/1)
beq_nat (plus n 1) O = false

Apply simpl and it does nothing. Apply reflexivity:

In environment
n : nat

Why does simpl fail?
Q: Why can't beq_nat (n + 1) be simpli�ed? (Hint: inspect its de�nition.)

CS720: Lecture 2 ❧ Tiago Cogumbreiro 18 / 34

Why does simpl fail?
Q: Why can't beq_nat (n + 1) be simpli�ed? (Hint: inspect its de�nition.)

A: beq_nat expects the �rst parameter to be either 0 or S ?n, but we have an expression n + 1 (or
plus n 1).

CS720: Lecture 2 ❧ Tiago Cogumbreiro 18 / 34

Why does simpl fail?
Q: Why can't beq_nat (n + 1) be simpli�ed? (Hint: inspect its de�nition.)

A: beq_nat expects the �rst parameter to be either 0 or S ?n, but we have an expression n + 1 (or
plus n 1).

Q: Can we simplify plus n 1?

CS720: Lecture 2 ❧ Tiago Cogumbreiro 18 / 34

Why does simpl fail?
Q: Why can't beq_nat (n + 1) be simpli�ed? (Hint: inspect its de�nition.)

A: beq_nat expects the �rst parameter to be either 0 or S ?n, but we have an expression n + 1 (or
plus n 1).

Q: Can we simplify plus n 1?

A: No because plus decreases on the �rst parameter, not on the second!

CS720: Lecture 2 ❧ Tiago Cogumbreiro 18 / 34

Case analysis (1/3)
Let us try to inspect value n. Use: destruct n as [| n'].

2 subgoals
______________________________________(1/2)
beq_nat (0 + 1) 0 = false
______________________________________(2/2)
beq_nat (S n' + 1) 0 = false

Now we have two goals to prove!

1 subgoal
______________________________________(1/1)
beq_nat (0 + 1) 0 = false

How do we prove this?

CS720: Lecture 2 ❧ Tiago Cogumbreiro 19 / 34

Case analysis (2/3)
After we conclude the �rst goal we get:

This subproof is complete, but there are some unfocused goals:

______________________________________(1/1)
beq_nat (S n' + 1) 0 = false

Use another bullet (-).

1 subgoal
n' : nat
______________________________________(1/1)
beq_nat (S n' + 1) 0 = false

And prove the goal above as well.

Why can the latter be simpli�ed?
CS720: Lecture 2 ❧ Tiago Cogumbreiro 20 / 34

CS720: Lecture 2 Tiago Cogumbreiro 20 / 34

Case analysis (3/3)
Use: destruct n as [| n'] when you want to explicitly name the variables being introduced
Otherwise, use: destruct n and let Coq automatically name the variables.

Using automatically generated variable names makes the proofs more brittle to change.

CS720: Lecture 2 ❧ Tiago Cogumbreiro 21 / 34

Basic.v
New syntax: forall to range over all values of a type
New syntax: Theorem and its relation with Definition and Example
New tactic: intros
Learn: interplay between forall, simpl, and reflexivity
New syntax: �> to represent implication
New tactic: rewrite to replace terms using equality
New tactic: destruct to perform case analysis
New tactic: bullets (-, *, and +) and scopes ({ and })

CS720: Lecture 2 ❧ Tiago Cogumbreiro 22 / 34

Compile Basic.v
CoqIDE:

Open Basics.v. In the "Compile" menu, click on "Compile Buffer".

Console:

make Basics.vo

CS720: Lecture 2 ❧ Tiago Cogumbreiro 23 / 34

Induction.v

24 / 34

Example: prove this lemma (1/4)
Theorem plus_n_O : forall n:nat,
 n = n + 0.
Proof.

CS720: Lecture 2 ❧ Tiago Cogumbreiro 25 / 34

Example: prove this lemma (1/4)
Theorem plus_n_O : forall n:nat,
 n = n + 0.
Proof.

Tactic simpl does nothing.

CS720: Lecture 2 ❧ Tiago Cogumbreiro 25 / 34

Example: prove this lemma (1/4)
Theorem plus_n_O : forall n:nat,
 n = n + 0.
Proof.

Tactic simpl does nothing. Tactic reflxivity fails.

CS720: Lecture 2 ❧ Tiago Cogumbreiro 25 / 34

Example: prove this lemma (1/4)
Theorem plus_n_O : forall n:nat,
 n = n + 0.
Proof.

Tactic simpl does nothing. Tactic reflxivity fails. Apply destruct n.

2 subgoals
______________________________________(1/2)
0 = 0 + 0
______________________________________(2/2)
S n = S n + 0

CS720: Lecture 2 ❧ Tiago Cogumbreiro 25 / 34

Example: prove this lemma (2/4)
After proving the �rst, we get

1 subgoal
n : nat
______________________________________(1/1)
S n = S n + 0

Applying simpl yields:

1 subgoal
n : nat
______________________________________(1/1)
S n = S (n + 0)

CS720: Lecture 2 ❧ Tiago Cogumbreiro 26 / 34

Example: prove this lemma (2/4)
After proving the �rst, we get

1 subgoal
n : nat
______________________________________(1/1)
S n = S n + 0

Applying simpl yields:

1 subgoal
n : nat
______________________________________(1/1)
S n = S (n + 0)

Tactic reflexivity fails and there is nothing to rewrite.
CS720: Lecture 2 ❧ Tiago Cogumbreiro 26 / 34

We need an induction principle of nat
For some property P we want to prove.

Show that holds.

Given the induction hypothesis , show that holds.

Conclude that holds for all .

P (0)
P (n) P (n+ 1)

P (n) n

CS720: Lecture 2 ❧ Tiago Cogumbreiro 27 / 34

Example: prove this lemma (3/4)
Apply induction n.

2 subgoals
______________________________________(1/2)
0 = 0 + 0
______________________________________(2/2)
S n = S n + 0

How do we prove the �rst goal?
Compare induction n with destruct n.

CS720: Lecture 2 ❧ Tiago Cogumbreiro 28 / 34

Example: prove this lemma (4/4)
After proving the �rst goal we get

1 subgoal
n : nat
IHn : n = n + 0
______________________________________(1/1)
S n = S n + 0

applying simpl yields

1 subgoal
n : nat
IHn : n = n + 0
______________________________________(1/1)
S n = S (n + 0)

How do we conclude this proof?
CS720: Lecture 2 ❧ Tiago Cogumbreiro 29 / 34

Intermediary results
 Theorem mult_0_plus' : forall n m : nat,
 (0 + n) * m = n * m.
 Proof.
 intros n m.
 assert (H: 0 + n = n). { reflexivity. }
 rewrite �> H.
 reflexivity. Qed.

H is a variable name, you can pick whichever you like.
Your intermediary result will capture all of the existing hypothesis.
It may include forall.
We use braces { and } to prove a sub-goal.

CS720: Lecture 2 ❧ Tiago Cogumbreiro 30 / 34

Formal versus informal proofs
The objective of a mechanical (formal) proofs is to appease the proof checker.
The objective of an informal proof is to convince (logically) the reader.
ltac proofs are imperative, assume the reader can step through
In informal proofs we want to help the reader reconstruct the proof state.

CS720: Lecture 2 ❧ Tiago Cogumbreiro 31 / 34

An example of an ltac proof
Theorem plus_assoc : forall n m p : nat,
 n + (m + p) = (n + m) + p.
Proof.
 intros n m p. induction n as [| n' IHn'].
 - reflexivity.
 - simpl. rewrite �> IHn'. reflexivity. Qed.

1. The proof follows by induction on .n

CS720: Lecture 2 ❧ Tiago Cogumbreiro 32 / 34

An example of an ltac proof
Theorem plus_assoc : forall n m p : nat,
 n + (m + p) = (n + m) + p.
Proof.
 intros n m p. induction n as [| n' IHn'].
 - reflexivity.
 - simpl. rewrite �> IHn'. reflexivity. Qed.

1. The proof follows by induction on .

2. In the base case, we have that . We need to show , which
follows by the de�nition of .

n

n = 0 0 + (m+ p) = 0 +m+ p

+

CS720: Lecture 2 ❧ Tiago Cogumbreiro 32 / 34

An example of an ltac proof
Theorem plus_assoc : forall n m p : nat,
 n + (m + p) = (n + m) + p.
Proof.
 intros n m p. induction n as [| n' IHn'].
 - reflexivity.
 - simpl. rewrite �> IHn'. reflexivity. Qed.

1. The proof follows by induction on .

2. In the base case, we have that . We need to show , which
follows by the de�nition of .

3. In the inductive case, we have and must show .
From the de�nition of it follows that .
The proof concludes by applying the induction hypothesis .

n

n = 0 0 + (m+ p) = 0 +m+ p

+
n = S n′ Sn +′ (m+ p) = Sn +′ m+ p

+ S (n +′ (m+ p)) = S (n +′ m+ p)
n +′ (m+ p) = n +′ m+ p

CS720: Lecture 2 ❧ Tiago Cogumbreiro 32 / 34

Induction.v
Learn: how to compile Basic.v
Learn: induction principle for natural numbers.
New tactic: induction
New tactic: assert
Learn: formal vs informal proofs

CS720: Lecture 2 ❧ Tiago Cogumbreiro 33 / 34

Ltac vocabulary
simpl
reflexivity
intros
rewrite
destruct
induction
assert

CS720: Lecture 2 ❧ Tiago Cogumbreiro 34 / 34

https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.simpl
https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.reflexivity
https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.intros
https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.rewrite
https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.destruct
https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.induction
https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.assert

