CS720

Logical Foundations of Computer Science

Lecture 4: polymorphism

Tiago Cogumbreiro

CS720: Lecture 4 & Tiago Cogumbreiro

A,

We now have... umass

« A reasonable understanding of proof techniques (through tactics)

« A reasonable understanding of functional programming (today's class mostly concludes this
part)

o A minimal understanding of logie programming (next class)

CS720: Lecture 4 & Tiago Cogumbreiro

A,

Why are we learning Coq? soston
Logical Foundations of CS
This course of CS 720 is divided into two parts:

1. The first part: Coq as a workbench to express the logical foundation of CS

2. The second part: use this workbench to formalize a programming language
I will give you other examples of how Coq is being used to formalize CS

CS720: Lecture 4 & Tiago Cogumbreiro 3/28

A,

UMASS

oday's class

1. QA about Homework 1 (Basics.v) (no solutions can be discussed!)
2. QA about Induction.v and Lists.v
3. Cover Poly.v

CS720: Lecture 4 & Tiago Cogumbreiro

QA about Homework 1 (Basicsw)

5/28

QA about Inductionyv and Listsv

6/28

Poly.v

Due Tuesday, September 25,11:59 EST

7128

A,

UMASS

oday we will...

« Learn to generalize functions/data types to accept any type

o Learn that Coq is an expression language (functions as data)

Why are we learning this?

« To be able to have interesting data-structures (containers)
e To be able to have reusable/generic definitions

CS720: Lecture 4 & Tiago Cogumbreiro

7

UMASS

Recall natlist from lecture 3

Inductive natlist : Type :=
| nil : natlist
| cons : nat = natlist — natlist.

I How do we write a list of bools?

CS720: Lecture 4 & Tiago Cogumbreiro

A,

UMASS

Recall natlist from lecture 3

Inductive natlist : Type :=
| nil : natlist
| cons : nat = natlist — natlist.

I How do we write a list of bools?

Inductive boollist : Type :=
| bool_nil : boollist
| bool_cons : nat = boollist —> boollist.

I How to migrate the code that targeted natlist to boollist? What is missing?

CS720: Lecture 4 & Tiago Cogumbreiro

A,

UMASS

Polymorphism

Inductive types can accept (type) parameters (akin to Java/C# generics, and type variables in
C++ templates).

Inductive list (X:Type) : Type :=
| nil : list X
| cons : X = list X — list X.

I What is the type of 11st? How do we print 1ist?

CS720: Lecture 4 a Tiago Cogumbreiro

A,

UMASS

Constructors of a polymorphic list

Check list.
yields

list
: Type = Type

I What does Type = Type mean? What about the following?

Search list.
Check list.
Check nil nat.
Check nil 1.

CS720: Lecture 4 & Tiago Cogumbreiro

A,

How do we encode thelist [1: 2]? e

CS720: Lecture 4 a Tiago Cogumbreiro

A,

How do we encode thelist [1: 2]? e

cons nat 1 (cons nat 2 (nil nat))

CS720: Lecture 4 & Tiago Cogumbreiro

A,

UMASS

Implement concatenation

Recall app:

Fixpoint app (11 12 : natlist) : natlist :=
match 11 with

| nil = 12
| h :: t =h :: (app t 12)
end.

I How do we make app polymorphic?

CS720: Lecture 4 & Tiago Cogumbreiro

Implement concatenation

Recall app:

Fixpoint app (11 12 : natlist) : natlist :=
match 11 with

| nil = 12
| h :: t =h :: (app t 12)
end.

I How do we make app polymorphic?

Fixpoint app (X:Type) (11 12 : list X) : list X :=
match 11 with

| nil _ = 12

| cons _h t = cons X h (app X t 12)

end.

A,

UMASS
BOSTON

Implement concatenation

Recall app:

Fixpoint app (11 12 : natlist) : natlist :=
match 11 with

| nil = 12
| h :: t =h :: (app t 12)
end.

I How do we make app polymorphic?

Fixpoint app (X:Type) (11 12 : list X) : list X :=
match 11 with

| nil _ = 12

| cons _h t = cons X h (app X t 12)

end.

A,

UMASS
BOSTON

A,

UMASS

ype inference (1/2)

Coq infer type information:

Fixpoint app X 11 12 :=
match 11 with

| nil _ = 12
| cons _h t = cons X h (app X t 12)
end.

Check app.

outputs

app

: forall X : Type, list X = list X = 1list X

CS720: Lecture 4 & Tiago Cogumbreiro

A,

UMASS

ype inference (2/2)

Fixpoint app X (11 12:list X) :=
match 11 with

| nil _ = 12

| cons _h t = cons _ h (app - t 12)
end.
Check app.
app

: forall X : Type, list X = list X — list X
Let us look at the output of

Compute cons nat 1 (cons nat 2 (nil nat)).
Compute cons - 1 (cons - 2 (nil _)).

CS720: Lecture 4 a Tiago Cogumbreiro

A,

UMASS

vpe information redundancy

I If Coq can infer the type, can we automate inference of type parameters?

CS720: Lecture 4 & Tiago Cogumbreiro

A,

UMASS

vpe information redundancy

I If Coq can infer the type, can we automate inference of type parameters?

Fixpoint app {X:Type} (11 12:1list X) : list X :=
match 11 with

| nil = 12
| cons h t = cons h (app t 12)
end.

Alternatively, use Arguments after a definition:

Arguments nil {X}. (* braces should surround argument being inferred *)
Arguments cons {_} _ _. (* you may omit the names of the arguments *)
Arguments app {X} 11 12. (* if the argument has a name, you *must* use the *same* name *)

CS720: Lecture 4 & Tiago Cogumbreiro

A,

UMASS

Try the following

Inductive list (X:Type) : Type :=
| nil : list X
| cons : X = list X = list X.

Arguments nil {_}.
Arguments cons {X} x y.

Search list.
Check list.
Check nil nat.
Compute nil nat.

I What went wrong?

CS720: Lecture 4 & Tiago Cogumbreiro

A,

UMASS

Try the following

Inductive list (X:Type) : Type :=
| nil : list X
| cons : X = list X = list X.

Arguments nil {_}.
Arguments cons {X} x vy.

Search list.
Check list.
Check nil nat.
Compute nil nat.

What went wrong? How do we supply type parameters when they are being automatically
inferred?

CS720: Lecture 4 & Tiago Cogumbreiro

A,

UMASS

Try the following

Inductive list (X:Type) : Type :=
| nil : list X
| cons : X = list X = list X.

Arguments nil {_}.
Arguments cons {X} x vy.

Search list.
Check list.
Check nil nat.
Compute nil nat.

What went wrong? How do we supply type parameters when they are being automatically
inferred?

Prefix a definition with g. Example: gnil nat.

CS720: Lecture 4 & Tiago Cogumbreiro

7

UMASS

Recall natprod and fst (lec 3)

Inductive natprod : Type :=
| pair : nat —= nat —> natprod.
Notation "(x , y)" := (pair x y).

I How do we make pair polymorphic with implicit type arguments?

CS720: Lecture 4 & Tiago Cogumbreiro

A,

UMASS

Recall natprod and fst (lec 3)

Inductive natprod : Type :=
| pair : nat —= nat —> natprod.
Notation "(x , y)" := (pair x y).

I How do we make pair polymorphic with implicit type arguments?

Inductive prod (X Y : Type) : Type :=
| pair : X = Y = prod X VY.
Arguments pair {_} {_}.
Notation "(x , y)" := (pair x y).

Definition fst {X Y:Type} (p : prod X V) : X :=
match p with
| pair x y = x
end.

I Should we make the arguments of prod implicit? Why? .

A,

UMASS

Recall natproad

Theorem surjective_pairing : forall (p : natprod),
p = (fst p, snd p).

I How does polymorphism affect our theorems? What about the proof?

CS720: Lecture 4 & Tiago Cogumbreiro

A,

UMASS

Recall natproad

Theorem surjective_pairing : forall (p : natprod),
p = (fst p, snd p).

I How does polymorphism affect our theorems? What about the proof?

Theorem surjective_pairing : forall (X Y:Type) (p : prod X V),
p = (fst p, snd p).

Low impact in proofs (usually, intros).

CS720: Lecture 4 & Tiago Cogumbreiro

A,

UMASS

Recall indexof (lecture 3)

I How do we make this function polymorphic?

Fixpoint indexof (n:nat) (1:natlist) : natoption :=
match 1 with
| nil = None
| h :: t =
match beg_nat h n with
| true = Some 0 (* element found at the head *)
| false =
match indexof n t with (* check for error *)
| Some i = Some (S i) (* increment successful result *)
| None = None (* propagate error *)
end
end
end.

CS720: Lecture 4 & Tiago Cogumbreiro

A,

UMASS

Higher-order functions

Require Import Coq.Lists.List. Import ListNotations.

Fixpoint indexof {X:Type} (beq: X = X — bool) (v:X) (1:list X) : option nat :
match 1 with
| nil = None
| cons h t =
match beg h v with
| true = Some 0 (* element found at the head *)
| false =
match indexof beq v t with (* check for error *)
| Some i = Some (S i) (* increment successful result *)
| None = None (* propagate error *)
end
end
end.
(* A couple of unit tests to ensure indexof is behaving as expected. *)
Goal indexof beg_nat 20 [10; 20; 30] = Some 1. Proof. reflexivity. Qed.
Goal indexof beg_nat 100 [10; 20; 38] = None. Proof. reflexivity. Qed.

A,

UMASS

Filter

Fixpoint filter {X:Type} (test: X—>bool) (1:1ist X) : (list X) :=
match 1 with
| [1=
[]
| h s t =
if test h
then h :: filter test t
else filter test t
end.

I What is the type of this function?

CS720: Lecture 4 & Tiago Cogumbreiro

A,

UMASS

Filter

Fixpoint filter {X:Type} (test: X—>bool) (1:1ist X) : (list X) :=
match 1 with
| []1=
[]
| h s t =
if test h
then h :: filter test t
else filter test t
end.

I What is the type of this function?
forall X: Type = (X = bool) — list X — list = X

I What does this function do?

CS720: Lecture 4 & Tiago Cogumbreiro

A,

UMASS

Filter

Fixpoint filter {X:Type} (test: X—>bool) (1:1ist X) : (list X) :=
match 1 with
| []1=
[]
| h s t =
if test h
then h :: filter test t
else filter test t
end.

I What is the type of this function?
forall X: Type = (X = bool) — list X — list = X
I What does this function do?

Retains all elements that succeed test.

% v
~ ~ y ~

A,

UMASS

How do we use Tilter?

I What if we want to retain 1 and 3? How do we do this?

filter 22? [10; 1; 3; 4]

CS720: Lecture 4 & Tiago Cogumbreiro

A,

UMASS

How do we use filter?

I What if we want to retain 1 and 3? How do we do this?
filter 2?77 [10; 1; 3; 4]
Answer 1:

Definition keep_1_3 (n:nat) : bool :=
match n with
| 1 = true
| 3 = true
| _ = false
end.
(* Assert that the output makes sense: *)
Goal filter keep_1_.3 [10; 1; 3; 4] = [1; 3].
Proof.
reflexivity.
Qed.

A,

UMASS

Revisit keep_1_3

Definition keep_1_3 (n:nat) : bool :=
match n with
| 1 = true
| 3 = true
| _ = false
end.

I Can we rewrite keep_1_3 by only using beq_nat and orb?

CS720: Lecture 4 & Tiago Cogumbreiro

Revisit keep_1_3

Definition keep_1_3 (n:nat) : bool :=
match n with
| 1 = true
| 3 = true
| _ = false
end.

I Can we rewrite keep_1_3 by only using beq_nat and orb?

Open Scope bool. (* ensure the [[| operator is loaded *)

Definition keep_1_3_v2 (n:nat) : bool :=
beg_nat 1 n || beg_nat 3 n.

CS720: Lecture 4 & Tiago Cogumbreiro

A,

UMASS

Anonymous functions

I Are we ever going to use keep_1_3 again?

Definition keep_1_3_v2 (n:nat) : bool :=
beg_nat 1 n || beg-nat 3 n.

Compute filter keep_1_3_v2 [10; 1; 3; 4].

CS720: Lecture 4 & Tiago Cogumbreiro

A,

UMASS

Anonymous functions

I Are we ever going to use keep_1_3 again?

Definition keep_1_3_v2 (n:nat) : bool :=
beg_nat 1 n || beg-nat 3 n.

Compute filter keep_1_3_v2 [10; 1; 3; 4].
If you are not, consider using anonymous functions:

Goal filter (fun (n:nat) : nat = beg_nat 1 n || beq-nat 3 n) [10; 1; 3; 4] = [1; 3].
Proof.
reflexivity.

Qed.

I Anonymous functions are helpful as one-shoot usages (like anonymous classes in Java and C#).

CS720: Lecture 4 & Tiago Cogumbreiro

A,

UMASS

Currying

Let us retainonly 3's

With an anonymous function:

Goal filter (fun n = match n with | 3 = true | - = false) [10; 1; 3; 4] = [3].
Proof.
reflexivity.

Qed.

What about Check (beg_nat 3)? Coq is an expression-based language, so beg_nat 3 is an
expression, as is beq_nat and beq_nat 3 10. What is the type of each expression?

CS720: Lecture 4 & Tiago Cogumbreiro

A,

UMASS

Currying

Let us retainonly 3's

With an anonymous function:

Goal filter (fun n = match n with | 3 = true | - = false) [10; 1; 3; 4] = [3].
Proof.
reflexivity.

Qed.

What about Check (beg_nat 3)? Coq is an expression-based language, so beg_nat 3 is an
expression, as is beq_nat and beq_nat 3 10. What is the type of each expression?

Goal filter (beq_nat 3) [10; 1; 3; 4] = [1; 3]. (* filter all elements that are equal to 3 *
Proof.

reflexivity.
Qed.

A,

UMASS

What we |learned...
Poly.v

« New capability: types as (function/data) arguments

New capability: type inference (omit types and let Coq guess the type)

New syntax: braces {} and Arguments for type variable inference (implicit arguments)

New syntax: {) makes all type arguments explicit

New syntax: fun declares anonymous functions

New capability: currying (function calls with argument missing yields a function)

(No new tactics.)

CS720: Lecture 4 & Tiago Cogumbreiro

Next class: read Tacticsy

CS720: Lecture 4 & Tiago Cogumbreiro

