
CS450

Structure of Higher Level Languages

Lecture 33: PhD in CS/Pattern matching

Tiago Cogumbreiro

1 / 42

Today we will learn…
What is a PhD

Research in the Software Veri�cation Lab

Learn about pattern matching

CS450 ☽ PhD in CS/Pattern matching ☽ Lecture 33 ☽ Tiago Cogumbreiro 2 / 42

What is a Ph.D.?

3 / 42

An academic degree where you
must:

1. Master a subject completely

2. Advance the state of the art

Meaning: Doctor of Philosophy

Importance: The highest
academic degree

Rarity: Specialized workforce
(4.5% of the population)

Prestige: The title of Doctor

What is a Ph.D.?

Source: www.cs.purdue.edu/homes/dec/essay.phd.html

CS450 ☽ PhD in CS/Pattern matching ☽ Lecture 33 ☽ Tiago Cogumbreiro 4 / 42

https://www.cs.purdue.edu/homes/dec/essay.phd.html

Overview: What is a Ph.D.?
1. Why join graduate school?

2. Why not join graduate school?

3. Why a graduate degree in CS?

4. What is the structure of a PhD?

5. How do the a PhD effectively?

CS450 ☽ PhD in CS/Pattern matching ☽ Lecture 33 ☽ Tiago Cogumbreiro 5 / 42

Why join graduate school?

6 / 42

Why join graduate school?
Intellectual curiosity: the challenge of learning, the culture of seeking and sharing
knowledge

Specialized degree: after graduation you will be a better professional

Autonomy: you want time to develop your own project

Better paying work prospects: a graduate degree is a good investment

PhD degrees are generally fully-funded!

CS450 ☽ PhD in CS/Pattern matching ☽ Lecture 33 ☽ Tiago Cogumbreiro 7 / 42

Why not join graduate school?
5-year investment: You will not be paying tuition, grants and serving as a teaching
assistant (TA) will pay you a stipend.
However, this stipend is signi�cantly lower than working in the industry!

Higher workload: Graduate course are more rigorous than undergraduate courses. You
will need to juggle TA with courses and research.

5-year commitment: You will be working on the same subject for 5 years.

Autonomy required: A PhD degree is not structured like a BSc. There is no exact
formula for an effective PhD degree. More freedom, more responsibility.

Travelling required: You will need to travel internationally.

Public speaking: A crucial part of the PhD is public speaking.

I am using 5 years as an approximate duration to conclude a PhD degree.

CS450 ☽ PhD in CS/Pattern matching ☽ Lecture 33 ☽ Tiago Cogumbreiro 8 / 42

Why join graduate school?

($1000/year)

Source: Payscale.com, 2019

CS450 ☽ PhD in CS/Pattern matching ☽ Lecture 33 ☽ Tiago Cogumbreiro 9 / 42

Why a graduate degree in CS?

Source: Best And Worst Graduate Degrees For Jobs in 2016. Lydia Dishman. Fortune, 2016.

CS450 ☽ PhD in CS/Pattern matching ☽ Lecture 33 ☽ Tiago Cogumbreiro 10 / 42

http://fortune.com/2016/03/21/best-worst-graduate-degrees-jobs-2016/

Why a graduate degree in CS?

Source: Best And Worst Graduate Degrees For Jobs in 2016. Lydia Dishman. Fortune, 2016.

CS450 ☽ PhD in CS/Pattern matching ☽ Lecture 33 ☽ Tiago Cogumbreiro 11 / 42

http://fortune.com/2016/03/21/best-worst-graduate-degrees-jobs-2016/

During your Ph.D. you must:

1. Master a subject completely

2. Advance the state of the art

12 / 42

The PhD degree

1. How to master a subject?

Take graduate courses

Read the literature: peer-reviewed scienti�c papers, books

Attend conferences: meet top experts

Attend summer schools: learn from world-class scholars

Visit universities

Do internships

What are peer-reviewed papers? Scienti�c articles are submitted to other scientists
experts in the �eld, who attest the scienti�c accuracy of the article. Articles may also be
presented in a conference.

CS450 ☽ PhD in CS/Pattern matching ☽ Lecture 33 ☽ Tiago Cogumbreiro 13 / 42

The PhD degree

2. How to advance the state of the art?

Complete a PhD thesis manuscript

Novel: the contribution must be completely new

Impact: the contribution must have a useful impact to society

Skills

explore, investigate, contemplate

conceptualize, �nd issues, solve problems

You will be the world expert on a subject!

CS450 ☽ PhD in CS/Pattern matching ☽ Lecture 33 ☽ Tiago Cogumbreiro 14 / 42

Let us say you are here

Source: matt.might.net/articles/phd-school-in-pictures/

CS450 ☽ PhD in CS/Pattern matching ☽ Lecture 33 ☽ Tiago Cogumbreiro 15 / 42

http://matt.might.net/articles/phd-school-in-pictures/

Step 1: complete PhD courses (MSc)

Source: matt.might.net/articles/phd-school-in-pictures/

CS450 ☽ PhD in CS/Pattern matching ☽ Lecture 33 ☽ Tiago Cogumbreiro 16 / 42

http://matt.might.net/articles/phd-school-in-pictures/

Step 2: master a subject completely

Source: matt.might.net/articles/phd-school-in-pictures/

CS450 ☽ PhD in CS/Pattern matching ☽ Lecture 33 ☽ Tiago Cogumbreiro 17 / 42

http://matt.might.net/articles/phd-school-in-pictures/

Step 3: advance the state of the art

Source: matt.might.net/articles/phd-school-in-pictures/

CS450 ☽ PhD in CS/Pattern matching ☽ Lecture 33 ☽ Tiago Cogumbreiro 18 / 42

http://matt.might.net/articles/phd-school-in-pictures/

Pursuing a Ph.D. effectively
A PhD adviser shall…

Advise the student. Help �nd a thesis topic, teach how to do research, write papers, give talks, etc.

Protect the student. Provide protection from and information about funding concerns.

Inform the student. Proactively provide realistic, honest advice about post-Ph.D. career prospects.

Frame student's work. Provide early and clear guidance about the time frames and conditions for

graduation.

A PhD student shall…

Get educated about career prospects post-PhD.

Determine if these career prospects match your expectations.

A PhD is not just research. There is coursework, quals, and writing a thesis.

Work hard and maintain a rhythm.

Follow the PhD program. You are responsible for meeting the program's deadlines and requirements.

Source: 5+5 Commandments of a Ph.D. Matt Might, John Regehr, Suresh Venkatasubramanian. 2011.
CS450 ☽ PhD in CS/Pattern matching ☽ Lecture 33 ☽ Tiago Cogumbreiro 19 / 42

http://matt.might.net/articles/phd-commandments/

Research in the Software
Veri�cation Lab

20 / 42

Software Veri�cation Lab

We make your programs run right

We study how systems work

We describe what we learned mathematically

We understand why systems fail

We build tools that help programmers

CS450 ☽ PhD in CS/Pattern matching ☽ Lecture 33 ☽ Tiago Cogumbreiro 21 / 42

Software Veri�cation Lab

The big picture

We care about High Performance Computing
(the backbone of scienti�c advancement)

We focus on large-scale scienti�c workloads

Our research improves the quality assurance of scienti�c codes

CS450 ☽ PhD in CS/Pattern matching ☽ Lecture 33 ☽ Tiago Cogumbreiro 22 / 42

Looking for collaborators
Summer research projects

PhD students

Check out the more than 40 software open source projects, written in Python, C++, Java,
OCaml, Coq, Racket, …

CS450 ☽ PhD in CS/Pattern matching ☽ Lecture 33 ☽ Tiago Cogumbreiro 23 / 42

https://gitlab.com/users/cogumbreiro/projects

What you will learn…

Intersection between

Software Engineering

Logic

Things you may learn

Functional programming

Multithreading/parallel programming

Developing Continuous Integration pipelines

Using super computers (clusters in national labs with 1000s of cores)

Implementing compilers/interpreters/debuggers

Programming proofs & proof engineering

Using SAT/SMT solvers & model checkers

CS450 ☽ PhD in CS/Pattern matching ☽ Lecture 33 ☽ Tiago Cogumbreiro 24 / 42

Pattern matching

25 / 42

Without

(define (r:eval-builtin sym)
 (cond [(equal? sym '+) +]
 [(equal? sym '*) *]
 [(equal? sym '-) -]
 [(equal? sym '/) /]
 [else #f]))

With match

(define (r:eval-builtin sym)
 (match sym
 ['+ +]
 ['* *]
 ['- -]
 ['/ /]
 [_ #f]))

Pattern matching
Operation match can perform pattern matching on the given argument. Think of it as a
switch statement on steroids.

The underscore operator _ means any pattern.

CS450 ☽ PhD in CS/Pattern matching ☽ Lecture 33 ☽ Tiago Cogumbreiro 26 / 42

No-match exception
Operation match raises an exception when no pattern is matched, unlike cond that returns #
<void>.

(match 1
 [10 #t]) ; Expecting 10, but given 1, so no match
 ; match: no matching clause for 1 [,bt for context]

CS450 ☽ PhD in CS/Pattern matching ☽ Lecture 33 ☽ Tiago Cogumbreiro 27 / 42

Matching lists
With cond

(define (factorial n)
 (cond [(= n 0) 1]
 [else (* n (factorial (- n 1)))]))

With match

CS450 ☽ PhD in CS/Pattern matching ☽ Lecture 33 ☽ Tiago Cogumbreiro 28 / 42

Matching lists
With cond

(define (factorial n)
 (cond [(= n 0) 1]
 [else (* n (factorial (- n 1)))]))

With match

(define (factorial n)
 (match n
 [0 1]
 [_ (* n (factorial (- n 1)))]))

CS450 ☽ PhD in CS/Pattern matching ☽ Lecture 33 ☽ Tiago Cogumbreiro 28 / 42

With define/match

(define/match (factorial n)
 [(0) 1]
 [(_) (* n (factorial (- n 1)))])

With match

(define (factorial n)
 (match n
 [0 1]
 [_ (* n (factorial (- n 1)))]))

 With cond

(define (factorial n)
 (cond [(= n 0) 1]
 [else (* n (factorial (- n 1)))]))

Introducing define/match
The de�ne and match pattern is so common that there is a short-hand version. Notice the
parenthesis!

CS450 ☽ PhD in CS/Pattern matching ☽ Lecture 33 ☽ Tiago Cogumbreiro 29 / 42

List patterns
Lists are so common that they deserve a special range of patterns

(define (f l)
 (match l
 [(list) #f] ; Matches the empty list
 [(list 1 2) #t] ; Matches a list with exactly 1 and 2
 [(list x y) (+ x y)] ; Matches a list with any two elements
 [(list h t ...) t])) ; Matches a nonempty list

(check-equal? (f (list)) ???)
(check-equal? (f (list 1) ???)
(check-equal? (f (list 1 2) ???)
(check-equal? (f (list 2 3) ???)

CS450 ☽ PhD in CS/Pattern matching ☽ Lecture 33 ☽ Tiago Cogumbreiro 30 / 42

List patterns
Lists are so common that they deserve a special range of patterns

(define (f l)
 (match l
 [(list) #f]
 [(list 1 2) #t]
 [(list x y) (+ x y)]
 [(list h t ...) t]))

(check-equal? (f (list)) #f)
(check-equal? (f (list 1) (list))
(check-equal? (f (list 1 2) #t)
(check-equal? (f (list 2 3) (+ 2 3))

CS450 ☽ PhD in CS/Pattern matching ☽ Lecture 33 ☽ Tiago Cogumbreiro 31 / 42

Example map
With cond

(define (map f l)
 (cond [(empty? l) l]
 [else (cons (f (first l)) (map f (rest l)))]))

With match

CS450 ☽ PhD in CS/Pattern matching ☽ Lecture 33 ☽ Tiago Cogumbreiro 32 / 42

Example map
With cond

(define (map f l)
 (cond [(empty? l) l]
 [else (cons (f (first l)) (map f (rest l)))]))

With match

(define (map f l)
 (match l
 [(list) l]
 [(list h t ...) (cons (f h) (map f t))]))

CS450 ☽ PhD in CS/Pattern matching ☽ Lecture 33 ☽ Tiago Cogumbreiro 32 / 42

With match With cond

(define (member x l)
 (cond
 [(empty? l) #f]
 [(equal? (first l) x) #t]
 [else (member x (rest l))]))

The #:when clause

Use the #:match clause to add a condition to the pattern

(define (member x l)
 (match l
 [(list) #f]
 [(list h _ ...) #:when (equal? x h) #t]
 [(list _ t ...) (member x t)]))

CS450 ☽ PhD in CS/Pattern matching ☽ Lecture 33 ☽ Tiago Cogumbreiro 33 / 42

struct patterns
Match also supports structs

(struct foo (bar baz))
(define (f x)
 (match x
 [(foo a b) (+ a b)]))
(check-equal? (f (foo 1 2)) 3)

CS450 ☽ PhD in CS/Pattern matching ☽ Lecture 33 ☽ Tiago Cogumbreiro 34 / 42

Exercise r:eval-exp
With cond

(define (r:eval-exp exp)
 (cond
 ; 1. When evaluating a number, just return that number
 [(r:number? exp) (r:number-value exp)]
 ; 2. When evaluating an arithmetic symbol, return the respective arithmetic function
 [(r:variable? exp) (r:eval-builtin (r:variable-name exp))]
 ; 3. When evaluating a function call evaluate each expression and apply
 ; the first expression to remaining ones
 [(r:apply? exp)
 ((r:eval-exp (r:apply-func exp))
 (r:eval-exp (first (r:apply-args exp)))
 (r:eval-exp (second (r:apply-args exp))))]
 [else (error "Unknown expression:" exp)]))

CS450 ☽ PhD in CS/Pattern matching ☽ Lecture 33 ☽ Tiago Cogumbreiro 35 / 42

Example r:eval-exp
(define/match (r:eval-exp exp)
 ; 1. When evaluating a number, just return that number
 [((r:number n)) n]
 ; 2. When evaluating an arithmetic symbol, return the respective arithmetic function
 [((r:variable x)) (r:eval-builtin x)]
 ; 3. When evaluating a function call evaluate each expression and apply
 ; the first expression to remaining ones
 [((r:apply ef (list ea1 ea2))) ((r:eval-exp ef) (r:eval-exp ea1) (r:eval-exp ea2))]
 [(_) (error "Unknown expression:" exp)])

Formalism

n ⇓ n x ⇓ builtin(x)
(e e e) ⇓ vf a1 a2

e ⇓ v e ⇓ v e ⇓ v v = v (v , v)f f a1 a1 a2 a2 f a1 a2

CS450 ☽ PhD in CS/Pattern matching ☽ Lecture 33 ☽ Tiago Cogumbreiro 36 / 42

Pattern matching
Pros

Write less code

Better safety (some languages support exhaustive pattern matching)

Cons

Exposes your data as public (more maintenance)

Any changes to your data, breaks patterns that match that data (tighter coupling)

CS450 ☽ PhD in CS/Pattern matching ☽ Lecture 33 ☽ Tiago Cogumbreiro 37 / 42

Implementing match

38 / 42

Implementing match for list

(define (list-match l on-empty on-cons)
 (cond
 [(empty? l) (on-empty)]
 [(list? l) (on-cons (first l) (rest l))]
 [else (error "Not a list!")]))

(define (length l)
 (list-match l
 (lambda () 0)
 (lambda (_ t) (+ 1 (length t)))))

CS450 ☽ PhD in CS/Pattern matching ☽ Lecture 33 ☽ Tiago Cogumbreiro 39 / 42

Racket's match is not exhaustive; we do
get a runtime error if no branch is met.
But how can we know if we are writing all
branches?

Implementing match for sets of structs

We can implement a function that works like match

with �xed branches

(define (s:value? v)
 (or (s:number? v)
 (s:void? v)
 (s:closure? v)))
(struct s:void () #:transparent)
(struct s:number (value) #:transparent)
(struct s:closure (env decl) #:transparent)

CS450 ☽ PhD in CS/Pattern matching ☽ Lecture 33 ☽ Tiago Cogumbreiro 40 / 42

Pros

The user must provide the code for
every case

Cons

The order of the branches is not easy to
remember

Implementing match for sets of structs

(define (match-s:value v on-number on-void on-closure)
 (cond [(s:number? v) (on-number (s:number-value v))]
 [(s:void? v) (on-void)]
 [(s:closure? v) (on-closure (s:closure-env v) (s:closure-decl v))]))
; Example:
(define (value-to-id v)
 (match-s:value v
 (lambda (x) 'number)
 (lambda () 'void)
 (lambda (env decl) 'closure)))

CS450 ☽ PhD in CS/Pattern matching ☽ Lecture 33 ☽ Tiago Cogumbreiro 41 / 42

Introducing keyword arguments
We can pre�x a function parameter with a #:symbol to declare that the order of the
arguments does not matter, the name of the parameter does (known as the keyword in
Racket).

(define (match-s:value v #:number on-number #:void on-void #:closure on-closure)
 (cond [(s:number? v) (on-number (s:number-value v))]
 [(s:void? v) (on-void)]
 [(s:closure? v) (on-closure (s:closure-env v) (s:closure-decl v))]))
; Example:
(define (value-to-id v)
 (match-s:value v
 #:void (lambda () 'void)
 #:number (lambda (x) 'number)
 #:closure (lambda (env decl) 'closure)))

CS450 ☽ PhD in CS/Pattern matching ☽ Lecture 33 ☽ Tiago Cogumbreiro 42 / 42

