CS450

Structure of Higher Level Languages
Lecture 28: Effectful operations

Tiago Cogumbreiro

Today we will... A

e Introduce a functional pattern monads
e |ntroduce state monads
e Introduce stack machines

CS450) Effectful operations) Lecture28) Tiago Cogumbreiro

Functional pattern:
Mutable state

Revisiting our reduction rules ?/11

>y v g vey

»u er Vg (Ef, Az.ty) »u, e Vg ve »u, By < Ef + [z := v, »g, t g vy »o,

| Effectful computation can be divided into three categories:

o Side-effect free computation in blue
o Computation that directly produces side effect in red
e Computation that indirectly produces some side-effect in black

We are » chaining » effectful » computations », that is the variables declared on the
left-hand side of » should be accessible in the right-hand side.

CS450) Effectful operations) Lecture28) Tiago Cogumbreiro

Refactoring memory-based operations dhass

(define vi+mem1 (d:eval-exp mem env el))
(define mem1 (eff-state vi+mem1))
(define v1 (eff-result v1+mem1))

(define env2+mem2 (environ-push mem1 env y v1)
(define env2 (eff-result env2+mem?2))
(define mem2 (eff-state env2+mem2))

(define v2+mem3 (d:eval-exp mem2 env2 e2))
(define mem3 (eff-state v2+mem3))
(define v2 (eff-result v2+mem3))

A,

The memory
needs to be
passed along from
one function call
to the next. How
can we refactor
this code so that
some function
does that for us?

CS450) Effectful operations) Lecture28) Tiago Cogumbreiro

Retfactoring evaluation of application ?/11

(define* v1 (d:eval-exp* env el))
(define® env2 (environ-push* env y v1)

(define* v2 (d:eval-exp* env2 e2))

At each step we separate the result from the state.
Our goal is to abstract the memory threading, that is to refactor away this mechanic
unpacking of the side effect structure.

CS450) Effectful operations) Lecture28) Tiago Cogumbreiro

Abstracting the state ?/11

|deal pseudo code

In today's class, we introduce an abstraction that allows us to achieve something similar
to the pseudo-code below. We highlight in yellow effectful definitions and operations.

(define* v1 (d:eval-exp* env el))
(define* env2 (environ-push® env y v1)

(define* v2 (d:eval-exp* env2 e2))

CS450) Effectful operations) Lecture28) Tiago Cogumbreiro

Roadmap: abstracting effectful computation ?/11

Combining:
» Effectful operations: s:eval-exp and environ-push, with
o Effectful variable declaration: v1, env2, and v2

(define* v1 (d:eval-exp* env el))
(define* env2 (environ-push® env y v1)

(define® v2 (d:eval-exp* env2 e2))

et lpvi» B+ E+[y:=v]»e g vo

CS450) Effectful operations) Lecture28) Tiago Cogumbreiro

A proxy example

Arithmetic on the heap

Example ?/11

Consider a heap of integers. We allocate two integers and then a third integer that holds
the some of the first two.

(define (progl h1)

(define eff-x (heap-alloc h1 1))
(define x (eff-result eff-x))
(define h2 (eff-state eff-x))

(define eff-y (heap-alloc h2 2))
(define y (eff-result eff-y))
(define h3 (eff-state eff-y))

(heap-alloc h3 (+ (heap-get h3 y) (heap-get h3 x))))
(define (run-state h op) (eff-state (op h)))
(define H (heap (hash (handle @) 1 (handle 1) 2 (handle 2) 3)))
(check-equal? (run-state empty-heap progl) H)

CS450) Effectful operations) Lecture28) Tiago Cogumbreiro

Fffectful operations ?/11

o An effectful operation takes a state and returns an effect eff that pairs some state with
some result. An effectful operation is parameterized by the state type and by the result

type.
* Below we define two effectful operations where the state is a heap.
Alloc Add
(define (num x) (define (add x vy)
(1ambda (h) (1ambda (h)
(heap-alloc h x))) (heap-alloc h (+ (heap-get h y) (heap-get h x)))))

Did you know?

e The state (heap) is a parameter, so that we can combine effectful operations.
e Functions num and add each returns an effectful operation

CS450) Effectful operations) Lecture28 D Tiago Cogumbreiro

Sequencing effectful operations 7

BOSTON

Example The bind operator
(define (prog2 h1) (define (bind o1 02)
(1ambda (h1)
(define eff-x ((num 1) h1)) (define eff-r (o1 h1))
(define x (eff-result eff-x)) (define r (eff-result eff-r))
(define h2 (eff-state eff-x)) (define h2 (eff-state eff-r))

((02 r) h2))
(define eff-y ((num 2) h2))

(define y (eff-result eff-y))
(define h3 (eff-state eff-y))

((add x y) h3))

We highlight in yellow an example of redundant code. Function bind abstracts away the
redundant code.

CS450) Effectful operations) Lecture28) Tiago Cogumbreiro

Abstracting with bind

Before

(define (prog2 h1)

(define eff-x ((num 1) h1))
(define x (eff-result eff-x))
(define h2 (eff-state eff-x))

(define eff-y ((num 2) h2))

(define y (eff-result eff-y))
(define h3 (eff-state eff-y))

((add x y) h3))

A,

UMASS
BOSTON

After
(define prog3

(bind (num 1)
(1ambda (x)

(bind (num 2)
(1ambda (y)

(add x y))))))

Using the bind operator we remove redundant code. You can think of bind as a variable

declaration, akin to an effectful define.

CS450) Effectful operations) Lecture28) Tiago Cogumbreiro

Stack machines

The state does not need to be a heap

Stack machines ?/11

Uses a stack of number to represent memory (rather than registers)
Variable-free code

Very compact object code

Examples of (virtual) stack machines: OpenJDK JVM, CPython interpreter

def mult():
X = pop
y = pop
push (x * y)
def prog():
push(2)
push(5)
mult()
push(2)
mult()

CS450) Effectful operations) Lecture28 D Tiago Cogumbreiro

A stack-based evaluator umss

Operations

e push(n) = (void)
e pop() = number

State

CS450) Effectful operations) Lecture28) Tiago Cogumbreiro

A stack-based evaluator ?/11

Operations

e push(n) = (void)
e pop() = number

State

e alist of numbers

CS450) Effectful operations) Lecture28 D Tiago Cogumbreiro

Implementing pop ?/11

(define (pop)

CS450) Effectful operations) Lecture28 D Tiago Cogumbreiro

Implementing pop ?/11
(define (pop)

(lambda (stack)
(eff (rest stack) (first stack))))

CS450) Effectful operations) Lecture28) Tiago Cogumbreiro

Implementing push ?/11

(define (push n)

CS450) Effectful operations) Lecture28) Tiago Cogumbreiro

Implementing push ?/11

(define (push n)

(1ambda (stack)
(eff (cons n stack) (void))))

CS450) Effectful operations) Lecture28) Tiago Cogumbreiro

Implementing mult ?/11

def mult():

X = pop
y = pop
push (x * y)

CS450) Effectful operations) Lecture28) Tiago Cogumbreiro

Implementing mult ?/11

def mult(): (define (mult)
X = pop (bind (pop)
y = pop (1ambda (x)
push (x * y) (bind (pop)

(1ambda (y)
(push (* x v)))))))

CS450) Effectful operations) Lecture28) Tiago Cogumbreiro

Implementing prog ?/11

Pseudo Code

def prog():
push(2)
push(5)
mult()
push(2)
mult()

CS450) Effectful operations) Lecture28) Tiago Cogumbreiro

Implementing prog
Pseudo Code

def prog():
push(2)
push(5)
mult()
push(2)
mult()

A,

UMASS
BOSTON

In Racket

(define prog4
(bind (push 2)
(1ambda (x1)
(bind (push 5)
(1ambda (x2)
(bind (mult)
(1ambda (x3)
(bind (push 2)
(1ambda (x4)
(mult))))))))))

(check-equal? (run-state (list) prog4) (list 20))

I Unfortunately, the code appears very nested if we indent it as we usually do. Can we do

better?

CS450) Effectful operations) Lecture28) Tiago Cogumbreiro

Sequencing effectful operators dhsss

CS450) Effectful operations) Lecture28) Tiago Cogumbreiro

Sequencing effectful operators ?/11

Solution Revisit prog4

(define (seq2 op1 op2)
(bind op1 (lambda (x) op2)))

(define (seq op . ops)
(cond [(empty? ops) op]
[else (seq2 op (apply seq ops))]))

CS450) Effectful operations) Lecture28) Tiago Cogumbreiro

.

Sequencing effectful operators i
Solution Revisit prog4
(define (seq2 op1 op2) (define progb
(bind op1 (lambda (x) op2))) (seq (push 2)
. (push 5)
(define (seq op . ops) (mult)
(cond [(empty? ops) op] (push 2)
[else (seq2 op (apply seq ops))])) (nult)))
(check-equal? (run-state (list) progb)
(1ist 20))
Limitations

The seq operator is a regular function call, which takes expressions as its arguments. This
complicates a situation where we might need to create a temporary variable (say to cache
a result) in the middle of a sea.

CS450) Effectful operations) Lecture28) Tiago Cogumbreiro

Syntactic sugar

for stateful operations

Syntactic sugar: the do notation ?/11

Macros can be useful technique to avoid redundant code. In our case, we are using a
macro to avoid syntactic verbosity.

(define-syntax do
(syntax-rules (<)

[(~ mexp) mexp]
[(_ var < mexp rest ...) (bind mexp (lambda (var) (do rest ...)))]

[(_ mexp rest ...) (bind mexp (lambda (_) (do rest ...)))]))

You do not need to understand this code today. We will learn about macros in detail in a
future lesson.

CS450) Effectful operations) Lecture28) Tiago Cogumbreiro

Syntactic sugar: the do notation ?/11

The do notation allows us to make our code less nested. The cost of using macros is that
they obfuscate the program's semantics.

Before After
(define (mult) (define (mult)

(bind (pop) (do
(1ambda (x) x < (pop)
(bind (pop) < (pop)

(lambda (y) (push (* xv)))
(push (* x v)))))))
Limitations

Similarly to seq, because of how the macro was designed, it takes a sequence of
expressions. Monadic interfaces usually introduce an operator pure to workaround the
issue.

The pure operator ?/11

The pure operator simply converts a pure (non-effectful) value into an effectful value,
leaving the state unaltered. One useful benefit of this is that it allow us to combine effectful

and pure operations in the same interface.

The pure operator Example
(define (pure v) (define (mult)
(1ambda (st) (do
(eff st v))) x < (pop)
y < (pop)

z < (pure (* xv))
(push z))))

CS450) Effectful operations) Lecture28) Tiago Cogumbreiro

Summary: the monad ?/11

A monad is a functional pattern which can be categorized of two base combinators:

» Bind: combines two effectful operations 07 and 0. Operation 07 produces a value that
is consumed by operation 0.

e Pure: Converts a pure value to a monadic operation, which can then be chained with
bind.

| In this course, we will learn that the monadic pattern appears in different contexts.

CS450) Effectful operations) Lecture28) Tiago Cogumbreiro

Summary: the state monad ?/11

o Data: the monadic data is a pair (struct eff) that holds the global state and some result.

e Bind: combines operation 01 with operation o2; after executing o1, we get a new state
and some result that are both fed into operation o0s.

To think...

Monadic function application: can we create a function call where all arguments are
monadic values? What about a monadic map? And a monadic fold?

(d?fine (mult)

do
z < (mapply * (pop) (pop))
(push z)))

CS450) Effectful operations) Lecture28) Tiago Cogumbreiro

