
CS450

Structure of Higher Level Languages

Lecture 22: Encoding mutability with heaps

Tiago Cogumbreiro

1 / 17

Today we learn about…
Motivating example on mutability

Implementing shared "mutable" state

Usage examples

Contracts

CS450 ☽ Encoding mutability with heaps ☽ Lecture 22 ☽ Tiago Cogumbreiro 2 / 17

How to implement mutation
without mutable constructs?

3 / 17

Motivating example
Calling function b must somehow access variable a which is de�ned after its creation.

; Env: []
(define b (lambda (x) a))
; Env: [(b . (closure ?? (lambda (x) a))]
(define a 20)
; Env: [(b . (closure ?? (lambda (x) a)) (a . 20)]
(b 1)

CS450 ☽ Encoding mutability with heaps ☽ Lecture 22 ☽ Tiago Cogumbreiro 4 / 17

Shared "mutable" state

with immutable data-structures

5 / 17

Why immutability?

Bene�ts

A necessity if we use a language without mutation (such as Haskell)

Parallelism: A great way to implement fast and safe data-structures in concurrent code
(look up copy-on-write)

Development: Controlled mutation improves code maintainability

Memory management: counters the problem of circular references (notably, useful in
C++ and Rust, see example)

Encoding shared mutable state with immutable data-structures is a great skill to have.

CS450 ☽ Encoding mutability with heaps ☽ Lecture 22 ☽ Tiago Cogumbreiro 6 / 17

https://en.wikipedia.org/wiki/Copy-on-write
https://stackoverflow.com/questions/34747464/

Heap
We want to design a data-structure that represents a heap (a shared memory buffer) that
allows us to: allocate a new memory cell, load the contents of a memory cell, and update
the contents of a memory cell.

Constructors

empty-heap returns an empty heap

(heap-alloc h v) creates a new memory cell in heap h whose contents are value v
(heap-put h r v) updates the contents of memory handle r with value v in heap h

Selectors

(heap-get h r) returns the contents of memory handle r in heap h

CS450 ☽ Encoding mutability with heaps ☽ Lecture 22 ☽ Tiago Cogumbreiro 7 / 17

Heap usage

(define h empty-heap) ; h is an empty heap
(define r (heap-alloc h "foo")) ; stores "foo" in a new memory cell

What should the return value of heap-alloc?

Should heap-alloc return a copy of h extended with "foo"? How do we access the
memory cell pointing to "foo"?

Should heap-alloc return a handle to the new memory cell? How can we access the new
heap?

CS450 ☽ Encoding mutability with heaps ☽ Lecture 22 ☽ Tiago Cogumbreiro 8 / 17

Heap usage

(define h empty-heap) ; h is an empty heap
(define r (heap-alloc h "foo")) ; stores "foo" in a new memory cell

What should the return value of heap-alloc?

Should heap-alloc return a copy of h extended with "foo"? How do we access the
memory cell pointing to "foo"?

Should heap-alloc return a handle to the new memory cell? How can we access the new
heap?

Function heap-alloc must return a pair eff that contains the new heap and the memory
handle.

(struct eff (state result) #:transparent)

CS450 ☽ Encoding mutability with heaps ☽ Lecture 22 ☽ Tiago Cogumbreiro 8 / 17

Heap usage example
Spec

(define h1 empty-heap) ; h is an empty heap
(define r (heap-alloc h1 "foo")) ; stores "foo" in a new memory cell
(define h2 (eff-state r))
(define x (eff-result r)) ;
(check-equal? "foo" (heap-get h2 x)) ; checks that "foo" is in x
(define h3 (heap-put h2 x "bar")) ; stores "bar" in x
(check-equal? "bar" (heap-get h3 x)) ; checks that "bar" is in x

CS450 ☽ Encoding mutability with heaps ☽ Lecture 22 ☽ Tiago Cogumbreiro 9 / 17

Handles must be unique
We want to ensure that the handles we create are unique, otherwise allocation could
overwrite existing data, which is undesirable.

Spec

(define h1 empty-heap) ; h is an empty heap
(define r1 (heap-alloc h1 "foo")) ; stores "foo" in a new memory cell
(define h2 (eff-state r1))
(define x (eff-result r1))
(define r2 (heap-alloc h2 "bar")) ; stores "foo" in a new memory cell
(define h3 (eff-state r2))
(define y (eff-result r2))
(check-not-equal? x y) ; Ensures that x �� y
(check-equal? "foo" (heap-get h3 x))
(check-equal? "bar" (heap-get h3 y))

CS450 ☽ Encoding mutability with heaps ☽ Lecture 22 ☽ Tiago Cogumbreiro 10 / 17

How can we implement

a memory handle?

11 / 17

A simple heap implementation
Let a handle be an integer

Recall that the heap only grows (no deletions)

A handle matches the number of elements already present in the heap

When the heap is empty, the �rst handle is 0, the second handle is 1, and so on.

CS450 ☽ Encoding mutability with heaps ☽ Lecture 22 ☽ Tiago Cogumbreiro 12 / 17

We use a hash-table to
represent the heap
because it has a faster
random-access than a
linked-list (where lookup
is linear on the size of
the list).

We wrap the hash-table
in a struct, and the
handle (which is a
number) in a struct, for
better error messages.
And because it helps
maintaining the code.

(struct heap (data) #:transparent)
(define empty-heap (heap (hash)))
(struct handle (id) #:transparent)
(struct eff (state result) #:transparent)
(define (heap-alloc h v)
 (define data (heap-data h))
 (define new-id (handle (hash-count data)))
 (define new-heap (heap (hash-set data new-id v)))
 (eff new-heap new-id))
(define (heap-get h k)
 (hash-ref (heap-data h) k))
(define (heap-put h k v)
 (define data (heap-data h))
 (cond
 [(hash-has-key? data k) (heap (hash-set data k v))]
 [else (error "Unknown handle!")]))

Heap implementation

CS450 ☽ Encoding mutability with heaps ☽ Lecture 22 ☽ Tiago Cogumbreiro 13 / 17

Contracts

14 / 17

Contracts
Adding some sanity to highly dynamic code.

Design-by-contract: idea pioneered by Bertrand Meyer and pushed in the programming
language Eiffel, which was recognized by ACM with the Software System Award in
2006.

Contracts are pre- and post-conditions each unit of code must satisfy (e.g., a function)

In some languages, notably F* and Dafny, pre- and post-conditions are checked at
compile time!

Bibliography

Design by Contract, in Advances in Object-Oriented Software Engineering, eds. D. Mandrioli and B. Meyer, Prentice
Hall, 1991.

CS450 ☽ Encoding mutability with heaps ☽ Lecture 22 ☽ Tiago Cogumbreiro 15 / 17

Contracts in Racket
Use define/contract rather than define to test the validity of each parameter and the
return value.

The �> operator takes a predicate for each argument and one predicate for the return
value
For instance: (�> symbol? real? string?) declares that the �rst parameter is a symbol,
the second parameter is numeric, and the return value is a string.

Example

(define/contract (f x y)
 ; Defines the contract
 (�> symbol? real? string?)
 (format "(~a, ~a)"))

CS450 ☽ Encoding mutability with heaps ☽ Lecture 22 ☽ Tiago Cogumbreiro 16 / 17

Contracts examples
Read up on Racket's manual entry on: data-structure contracts

real? for numbers

any/c for any value

list? for a list

listof number? for a list that contains numbers

cons? for a pair

(or/c integer? boolean?) either an integer or a boolean

(and/c integer? even?) an integer that is an even number

(cons/c number? string?) a pair with a number and a string

(hash/c symbol? number?) a hash-table where the keys are symbols and the keys are
numbers

CS450 ☽ Encoding mutability with heaps ☽ Lecture 22 ☽ Tiago Cogumbreiro 17 / 17

https://docs.racket-lang.org/reference/data-structure-contracts.html

