Today we will...

1. Motivate the need for environments
2. Introduce the λ_E language formally
3. Discuss the implementation details of the λ_E-Racket
4. Discuss test-cases

In this unit we learn about...

- Implementing a formal specification
- Growing a programming language interpreter
The λ-calculus is slow
Recall the λ-calculus

Syntax

$$e ::= v \mid x \mid (e_1 e_2) \quad v ::= n \mid \lambda x.e$$

Semantics

$$v \Downarrow v \ (E\text{-val})$$

Complexity?

$$e_f \Downarrow \lambda x.e_b \quad e_a \Downarrow v_a \quad e_b [x \mapsto v_a] \Downarrow v_b \quad (e_f e_a) \Downarrow v_b \ (E\text{-app})$$
A complexity analysis on function-call

Let us focus consider our implementation of Micro-Racket, and draw our attention to function substitution.

Given a function call \((e_f \ e_a)\)

1. We evaluate \(e_f\) down to a function \((\lambda(x) \ e_b)\)
2. We evaluate \(e_a\) down to a value \(v_a\)
3. We evaluate \(e_b[x \mapsto v_a]\) down to a value \(v_b\)

What is the complexity of the substitution operation \([x \mapsto v_a]\)?
A complexity analysis on function-call

Let us focus consider our implementation of Micro-Racket, and draw our attention to function substitution.

Given a function call \((e_f \ e_a)\)

1. We evaluate \(e_f\) down to a function \((\lambda(x) \ e_b)\)
2. We evaluate \(e_a\) down to a value \(v_a\)
3. We evaluate \(e_b[x \mapsto v_a]\) down to a value \(v_b\)

What is the complexity of the substitution operation \([x \mapsto v_a]\)?

The run-time grows **linearly** on the size of the expression, as we must replace \(x\) by \(v_a\) in every sub-expression of \(e_b\).
Can we do better?
Can we do better?

Yes, we can sacrifice some space to improve the run-time speed.
Decreasing the run time of substitution

Idea 1: Use a lookup-table to bookkeep the variable bindings

Idea 2: Introduce closures/environments
We introduce the evaluation of expressions down to values, parameterized by environments:

\[e \downarrow^E \nu \]

The evaluation takes two arguments: an expression \(e \), and an environment \(E \). The evaluation returns a value \(\nu \).

Attention!

Homework Assignment 4:
- Evaluation \(e \downarrow^E \nu \) is implemented as function \((e:eval\ env\ exp) \) that returns a value \(e:value \), an environment \(env \) is a hash, and expression \(exp \) is an \(e:expression \).
- Functions and structs prefixed with \(s: \) correspond to the \(\lambda_S \) language (Section 1).
- Functions and structs prefixed with \(e: \) correspond to the \(\lambda_E \) language (Section 2).
\(\lambda_E \)-calculus: \(\lambda \)-calculus with environments

Syntax

\[e ::= v \mid x \mid (e_1 e_2) \mid \lambda x.e \quad v ::= n \mid (E, \lambda x.e) \]

Semantics

\[v \Downarrow_E v \quad (E\text{-val}) \]

\[x \Downarrow_E E(x) \quad (E\text{-var}) \]

\[\lambda x.e \Downarrow_E (E, \lambda x.e) \quad (E\text{-clos}) \]

\[e_f \Downarrow_E (E_b, \lambda x.e_b) \quad e_a \Downarrow_E v_a \quad e_b \Downarrow_{E_b[x \mapsto v_a]} v_b \]

\[(e_f e_a) \Downarrow_E v_b \quad (E\text{-app}) \]
Overview of λ^E-calculus

Notable differences

1. Declaring a function is an expression that yields a function value (a closure), which packs the environment at creation-time with the original function declaration.
2. Calling a function unpacks the environment E_b from the closure and extends environment E_b with a binding of parameter x and the value v_a being passed.

Environments

An environment E maps variable bindings to values.

Constructors

- Notation \emptyset represents the empty environment (with zero variable bindings)
- Notation $E[x \mapsto v]$ extends an environment with a new binding (overwriting any previous binding of variable x).

Accessors

- Notation $E(x) = v$ looks up value v of variable x in environment E.
Church's encoding
Chuch's encoding

- Alonzo Church created the λ-calculus
- Church's Encoding is a treasure trove of λ-calculus expressions: it shows how natural numbers can be encoded
- Let us go through Church's encoding of booleans
- Examples taken from Colin Kemp's PhD thesis (page 17)
Encoding Booleans with \(\lambda \)-terms

Why? Because you will be needing test-cases.

```
(require rackunit)
(define ns (make-base-namespace))
(define (run-bool b) (((eval b ns) #t) #f))

(define TRUE '(lambda (a) (lambda (b) a)))
(define FALSE '(lambda (a) (lambda (b) b)))
(define (OR a b) (list (list a TRUE) b))
(define (AND a b) (list (list a b) FALSE))
(define (NOT a) (list (list a FALSE) TRUE))
(define (EQ a b) (list (list a b) (NOT b)))

(check-equal? (run-bool (EQ TRUE (OR (AND FALSE TRUE) TRUE)))
(equal? #t (or (and #f #t) #t)))
```