
CS450

Structure of Higher Level Languages

Lecture 18: Lexical/dynamic scoping

Tiago Cogumbreiro

1 / 21

Today we will learn…
Lexical scoping

Dynamic scoping

Function closures

Compute which variables are captured by a function declaration

Acknowledgment: Today's lecture is inspired by Professor Dan Grossman's wonderful
lecture in CSE341 from the University of Washington: Video 1 Video 2 Video 3 Video 4

CS450 ☽ Lexical/dynamic scoping ☽ Lecture 18 ☽ Tiago Cogumbreiro 2 / 21

https://courses.cs.washington.edu/courses/cse341/18au/lec14slides.pdf
https://courses.cs.washington.edu/courses/cse341/18au/videos/unit3/uncaptioned/049-lexical-scope.mp4
https://courses.cs.washington.edu/courses/cse341/18au/videos/unit3/uncaptioned/050-lexical-scope-and-functions.mp4
https://courses.cs.washington.edu/courses/cse341/18au/videos/unit3/uncaptioned/051-why-lexical-scope.mp4
https://courses.cs.washington.edu/courses/cse341/18au/videos/unit3/uncaptioned/052-closures-and-recomputation.mp4

Lexical Scope

3 / 21

Binding: association between a variable
and a value.

Scope of a binding: the text where
occurrences of this name refer to the
binding

Lexical (or static) scope: the innermost
lexically-enclosing construct declaring
that variable

Did you know? In Computer Science,
static analysis corresponds to analyzing
the source code, without running the
program.

(define (f)
 (define x 10) ; visible: f
 (define y 20) ; visible: f, f.x
 (+ x y)) ; visible: f, f.x, f.y

; visible: f
(define x 1)
; visible: f, x
(define y (+ x 1))
; visible: f, x, y
(check-equal? (f) 30) ; yields (+ f.x f.y)

Lexical Scope

CS450 ☽ Lexical/dynamic scoping ☽ Lecture 18 ☽ Tiago Cogumbreiro 4 / 21

Dynamic Scope

5 / 21

Variable scope depends on the calling
context

Renders all variables global

appeared in McCarthy’s Lisp 1.0 as a bug and became
a feature in all later implementations, such as
MacLisp, Gnu Emacs Lisp.

Moreau, L. Higher-Order and Symbolic Computation
(1998) 11: 233. DOI:10.1023/A:1010087314987

;; NOT VALID RACKET CODE!!!
(define (f) x)

(define (g x) (f))
(check-equal? (g 10) 10)

(define x 20)
(check-equal? (f) 20)

Lexical scope vs dynamic scope
Lexical scoping is the default in all popular programming languages

With lexical scoping, we can analyze the source code to identify the scope of every
variable

With lexical scoping, the programmer can reason about each function independently

What is a dynamic scope?

CS450 ☽ Lexical/dynamic scoping ☽ Lecture 18 ☽ Tiago Cogumbreiro 6 / 21

https://doi.org/10.1023/A:1010087314987

(define x 1)

(define (f y) (+ y x))

(define (g)
 (define x 2)
 (define y 3)
 (f (+ x y)))

(check-equal? (g) ???)

Example
What is the result of evaluating (g)?

CS450 ☽ Lexical/dynamic scoping ☽ Lecture 18 ☽ Tiago Cogumbreiro 7 / 21

(define x 1)

(define (f f:y) (+ f:y x))

(define (g)
 (define g:x 2)
 (define g:y 3)
 (f (+ g:x g:y)))

(check-equal? (g) 6)

Example
What is the result of evaluating (g)?

CS450 ☽ Lexical/dynamic scoping ☽ Lecture 18 ☽ Tiago Cogumbreiro 8 / 21

Why lexical scoping?
Lexical scoping is important for using functions-as-values

To implement our Mini-Racket we will need to implement lexical scoping

CS450 ☽ Lexical/dynamic scoping ☽ Lecture 18 ☽ Tiago Cogumbreiro 9 / 21

Example
What is the result of evaluating (g)?

(define (g) x)

(define x 10)

(check-equal? (g) ??)

CS450 ☽ Lexical/dynamic scoping ☽ Lecture 18 ☽ Tiago Cogumbreiro 10 / 21

Example
What is the result of evaluating (g)?

(define (g) x)
; (g) throws an error here
(define x 10)

(check-equal? (g) 10)

We can de�ne a function g that refers to an unde�ned variable x; variable x must be
de�ned before calling g.
In Racket, variable de�nition produces a side-effect, as the de�nition of x impacted a
previously de�ned function g. In Module 5, we implement the semantics of define.

CS450 ☽ Lexical/dynamic scoping ☽ Lecture 18 ☽ Tiago Cogumbreiro 11 / 21

Accessing variables outside a function
The body of a function can refer to variables de�ned outside of that function.

It can access variables is de�ned outside of the function, but where exactly?

The function's body can access any variable that is accessible/visible when the function is
de�ned, which is known as the lexical scope.

In the following example, the function returns 3 and not 10, even though variable x is now 10.

; For a given x create a new function that always returns x
(define (getter x) (lambda () x))
(define get3 (getter 3)) ; At creation time, x = 3
(define x 10)
(check-equal? 3 (get3)) ; At call time, x = 10

CS450 ☽ Lexical/dynamic scoping ☽ Lecture 18 ☽ Tiago Cogumbreiro 12 / 21

Function closures

13 / 21

Recall that functions capture variables

Function closure

A function closure is the return value of function declaration (i.e., the function value)

De�nition: A function closure is a pair that stores a function declaration and its lexical
environment (i.e., the state of each variable captured by the function declaration)

The technique of creating a function closure is used by compilers/interpreters to
represent function values

Recall that function declarion �� function de�nition:

Function declaration: (lambda (variable*) term+)
Function de�nition: (define (variable+) term+)

CS450 ☽ Lexical/dynamic scoping ☽ Lecture 18 ☽ Tiago Cogumbreiro 14 / 21

Now we know what a function closure is
1. How to compute the variables in a closure

2. When to set the values of each variable in a closure

CS450 ☽ Lexical/dynamic scoping ☽ Lecture 18 ☽ Tiago Cogumbreiro 15 / 21

Function closures: captured variables
It is crucial for us to know how variables are captured in Racket.

Given an expression the set of free variables can be de�ned inductively:

When the expression is a variable x, the set of free variables is { x }.

When the expression is a (lambda (x) e), the set of free variables is that of expression e
minus variable x.

When the expression is a function application (e1 e2), the set of free variables is the
union of the set of free variables of e1 and the set of free variables of e2.

Captured variables: Given an expression (lambda (x) e) a function closure captures the
set of free variables of expression (lambda (x) e).

CS450 ☽ Lexical/dynamic scoping ☽ Lecture 18 ☽ Tiago Cogumbreiro 16 / 21

Captured variables examples
Let us compute (lambda (x) (+ x y)):

1. The free-variables of a are the free variables of the body of the function minus

parameter .

 (lambda (x) (+ x y)) = (+ x y)

2. We are now in a case of function application, which is the union of the free variables of
each of its sub expressions.

 (+ x y)

4. Finally, we reach the case where each argument of free-vars is a variables.

fv

λ

x

fv fv ∖{x}

fv ∖{x} = (fv(+) ∪ fv(x) ∪ fv(y)) ∖ {x}

(fv(+) ∪ fv(x) ∪ fv(y)) ∖ {x} = ({+} ∪ {x} ∪ {y}) ∖ {x} = {+, x, y} ∖ {x} = {+, y}

CS450 ☽ Lexical/dynamic scoping ☽ Lecture 18 ☽ Tiago Cogumbreiro 17 / 21

What creates an environment?
De�nition: At any execution point there is an environment, which maps each variable to a
value.

What creates environments:

Each branch inside a cond creates an environment

The body of a function creates an environment

What updates an environment:

The arguments of a lambda are added to the function's body environment

A (define x e) updates the current environment by adding/updating variable x and
setting it to the value that results from evaluating e

CS450 ☽ Lexical/dynamic scoping ☽ Lecture 18 ☽ Tiago Cogumbreiro 18 / 21

Example 1: capture an argument
The lambda is capturing x as the parameter of getter at creation time, so when we call
(getter3) we get (lambda () 3).

(define (getter x)
 (lambda () x)) ; getter:x

(define get3 (getter 3)) ; getter:x = 3; (lambda () getter:x)
(check-equal? 3 (get3))

CS450 ☽ Lexical/dynamic scoping ☽ Lecture 18 ☽ Tiago Cogumbreiro 19 / 21

Example 3: cond starts a new scope
Function getter captured x at the outermost scope (the x captured at function declaration
time). Inside the branches of cond we have a new scope, which means that getter is
unaffected by the rede�nition of x.

(define (getter) x) ; root.x
(define x 10) ; root.x = 10
; Each branch of the cond creates a new environment
; so it does not affect getter
(cond [#t (define x 20) (check-equal? 10 (getter))])
(check-equal? 10 (getter))

CS450 ☽ Lexical/dynamic scoping ☽ Lecture 18 ☽ Tiago Cogumbreiro 20 / 21

Example 3: de�ne shadows parameters
Function getter returns variable x from the environment of function f. When calling f 20
the last value of variable x in the scope of f is 10, due to (define x 10), which overwrites
the function's parameter x=20.

(define (f x)
 (define (getter) x) ; f.x = ?
 (define x 10) ; f.x = 10
 getter)

(define g (f 20))
(check-equal? 10 (g))

CS450 ☽ Lexical/dynamic scoping ☽ Lecture 18 ☽ Tiago Cogumbreiro 21 / 21

