
CS450

Structure of Higher Level Languages

Lecture 17: Language λS: slow function calls

Tiago Cogumbreiro

1 / 27

Module 3 recap
Delayed evaluation

Delayed evaluation as a cornerstone to create in�nite data structures

promises

thunks

The basis of evaluation

CS450 ☽ Language λS: slow function calls ☽ Lecture 17 ☽ Tiago Cogumbreiro 2 / 27

Module 4
Implementing a Racket interpreter

3 / 27

Today we will…
1. Overview how to design an interpreter

2. Introduce the λS formally

3. Discuss the implementation of the formal rules

4. Discuss test-cases

CS450 ☽ Language λS: slow function calls ☽ Lecture 17 ☽ Tiago Cogumbreiro 4 / 27

Why should we care

about mathematical formalisms?

5 / 27

Source: www.youtube.com/watch?v=pgWTmOyUjtM

https://www.youtube.com/watch?v=pgWTmOyUjtM

For fundamental contributions to the
theory and practice of distributed and
concurrent systems, notably the
invention of concepts such as causality
and logical clocks, safety and liveness,
replicated state machines, and sequential
consistency.

Did you know?

Lamport is the creator of TLA+ "a high-level
language for modeling programs and systems" and
verifying the correctness of these models

Lamport also created LaTeX!
Source: lamport.org

Leslie Lamport
2013 Turing Award:

CS450 ☽ Language λS: slow function calls ☽ Lecture 17 ☽ Tiago Cogumbreiro 7 / 27

https://lamport.azurewebsites.net/tla/tla.html
https://amturing.acm.org/award_winners/lamport_1205376.cfm

The importance of formalisms
A mathematically precise speci�cation (no ambiguity)

Notation: condense information, an abstraction tool, a visualization aid

Limitations

Maintaining a speci�cation up-to-date with the implementation takes time and effort

Yet another thing to learn: Can everyone in the project understand the speci�cation?

What is the risk of a failure versus the time spent in specifying the software?

CS450 ☽ Language λS: slow function calls ☽ Lecture 17 ☽ Tiago Cogumbreiro 8 / 27

Language λS (Mini Racket)
Evaluating function declarations

A great way to learn is to implement

9 / 27

How to implement a programming language?
In this class, we will learn how to implement an interpreter. In CS451/651 you can learn
how to implement a compiler.

1. The interpreter:

1. a parser converts the source code into an abstract-syntax-tree (a logical
representation of the program)

2. an interpreter executes the abstract-syntax-tree

2. The compiler:

1. a parser converts the source code into an abstract-syntax-tree

2. a compiler converts the abstract-syntax-tree into assembly (through a series of
steps)

CS450 ☽ Language λS: slow function calls ☽ Lecture 17 ☽ Tiago Cogumbreiro 10 / 27

https://www.cs.umb.edu/academics/courses/CS451/
https://www.cs.umb.edu/academics/courses/CS651/

What is an interpreter

An interpreters executes programs of a given language

Usually, an interpreter executes a logical representation of the source code (known as
the abstract syntax).

An interpret repeatedly executes (evaluates) one instruction (expression) at a time, until
the program terminates.

Did you know?

Python, for instance, is known as an interpreter, but it actually compiles Python into a assembly-like language
that is then interpreted (executed). Racket works the same way as Python. Java is also executed in the same
way, but compilation is performed by the user.

Additionally, for performance reasons, some interpreters perform just-in-time compilation, which dynamically
translates (compiles) small parts of the language as machine code that is executed directly by the CPU.

CS450 ☽ Language λS: slow function calls ☽ Lecture 17 ☽ Tiago Cogumbreiro 11 / 27

Text �le:

((lambda (x) x) 3)

Concrete syntax:

'((lambda (x) x) 3)

Abstract syntax:

(r:apply (r:lambda (list (r:variable 'x))

(list (r:variable 'x))) (list (r:number 3)))

Evaluation: (r:number 3)

⇓

⇓

⇓

12 / 27

Syntax of λS

13 / 27

Concrete Syntax of λS
The concrete syntax dictates the syntactic structure of a program (how do we represent
a number, a variable, etc). This is not the focus of our course (refer to CS451/651).

We can easily sidestep the parsing issue by reminding ourselves that quote can serialize
Racket expressions into a data structure.

CS450 ☽ Language λS: slow function calls ☽ Lecture 17 ☽ Tiago Cogumbreiro 14 / 27

https://www.cs.umb.edu/academics/courses/CS451/
https://www.cs.umb.edu/academics/courses/CS651/

Abstract Syntax
In Racket

Mathematically

(define (r:expression? e) (or (r:value? e) (r:variable? e) (r:apply? e))) ; Utility predicat
(define (r:value? v) (or (r:number? v) (r:lambda? v))) ; Utility predicat
(struct r:number (value) #:transparent)
(struct r:variable (name) #:transparent)
(struct r:lambda (args body) #:transparent)
(struct r:apply (func args) #:transparent)

e ::= v ∣ x ∣ (e e) v :1 2 := n ∣ λx.e

CS450 ☽ Language λS: slow function calls ☽ Lecture 17 ☽ Tiago Cogumbreiro 15 / 27

The abstract syntax of λS
A formal notation

An expression is represented by letter

A value is represented by letter

A variable is represented by letter

A function application is represented by notation , where is an expression, and

 is another expression. The subscript numbers are just a way to distinguish each

expression.

A number is represented by letter

A function declaration is represented by

e ::= v ∣ x ∣ (e e) v :1 2 := n ∣ λx.e

e

v

x

(e e)1 2 e1
e2

n

λx.e

CS450 ☽ Language λS: slow function calls ☽ Lecture 17 ☽ Tiago Cogumbreiro 16 / 27

Semantics of λS

17 / 27

λS
Syntax

Semantics

Did you know?

The cornerstone of functional programming, and a foundation of logic (and mathematics)

The -calculus can be used to simulate any Turing machine

Invented in 1930, by Alonzo Church

Since λ-Racket is Turing complete, can you write a non-terminating program in λ-Racket?

e ::= v ∣ x ∣ (e e) v :1 2 := n ∣ λx.e

v ⇓ v (E-val) (E-app)
(e e) ⇓ vf a b

e ⇓ λx.e e ⇓ v e [x↦ v] ⇓ vf b a a b a b

λ

CS450 ☽ Language λS: slow function calls ☽ Lecture 17 ☽ Tiago Cogumbreiro 18 / 27

Example

We show that evaluating returns :

1. The expression is a function application, so we must apply rule

2. We evaluate function with rule , which is a value and therefore get the same

value back

3. We evaluate argument with rule , which is also a value and therefore we get

the same value back

4. Finally, we take the body of the function and substitute variable by the number 10

and evaluate 10, which because it is a value we get 10 back.

((λx.x) 10) ⇓ 10
λx.x ⇓ λx.x 10 ⇓ 10 x[x↦ 10] ⇓ vb

x[x↦ 10] = 10 10 ⇓ 10

((λx.x) 10) 10

E-app

λx.x E-val

10 E-val

x x

CS450 ☽ Language λS: slow function calls ☽ Lecture 17 ☽ Tiago Cogumbreiro 19 / 27

λS semantics

We will use a more familiar notation. We de�ne the evaluation function that

takes an expression and returns a value .

Rule

Rule

eval(e) = v

e v

(E-val)

eval(v) = v

(E-app)

eval((e e)) = vf a b

eval(e) = (λ(x) e) eval(e) = v eval(subst(e , x, v)) = vf b a a b a b

CS450 ☽ Language λS: slow function calls ☽ Lecture 17 ☽ Tiago Cogumbreiro 20 / 27

Mathematical notation

Code notation

Rule

Rule

v ⇓ v (E-val) (E-app)
(e e) ⇓ vf a b

e ⇓ λx.e e ⇓ v e [x↦ v] ⇓ vf b a a b a b

(E-val)

eval(v) = v

(E-app)

eval((e e)) = vf a b

eval(e) = (λ(x) e) eval(e) = v eval(subst(e , x, v)) = vf b a a b a b

CS450 ☽ Language λS: slow function calls ☽ Lecture 17 ☽ Tiago Cogumbreiro 21 / 27

λS semantics, informally

Our objective is to evaluate an expression.

1. If the expression is a value, then we are in the base case, and we return value .

2. If the expression is a variable , this is an error, report it as such.

3. Otherwise, we have a function application . Recursively evaluate function

down to a value. Ensure that the result is a function declaration, say .

4. Recursively evaluate the argument of the function down to a value .

5. Substitute variable by value in , say . Recursively evaluate .

e e

x

(e e)f a ef
(lambda(x) e)d

ea va

x va ed e [x↦d v]a e [x↦d v]a

CS450 ☽ Language λS: slow function calls ☽ Lecture 17 ☽ Tiago Cogumbreiro 22 / 27

Variable substitution

23 / 27

Variable substitution, formally

n[x↦ v] = n

x[x↦ v] = v

y[x↦ v] = y if x = y

(λx.e)[x↦ v] = λx.e
(λy.e)[x↦ v] = λy.(e[x↦ v]) if x = y

(e e)[x↦1 2 v] = (e [x↦1 v] e [x↦2 v])

CS450 ☽ Language λS: slow function calls ☽ Lecture 17 ☽ Tiago Cogumbreiro 24 / 27

Variable substitution, informally
Objective: substitute variable by value in expression , notation .

1. If the expression is a number, say , then return .

2. If the expression is a variable and , then return . Otherwise, return .

3. If the expression is a function call , then return . That is,

recursively substitute each sub-expression.

4. If the expression is a function de�nition , then

What should we do?

x v e e[x↦ v]

n n

y x = y v y

(e e)1 2 (e [x↦1 v], e [x↦2 v])

(λ(y) e) …

CS450 ☽ Language λS: slow function calls ☽ Lecture 17 ☽ Tiago Cogumbreiro 25 / 27

Test-case utility function
Function (check-r:eval? exp val) is given in the template to help you test effectively your
code.

The use of check-r:eval is optional. You are encouraged to play around with r:eval directly.

1. The �rst parameter is an S-expression that represents the a valid expression

2. The second parameter is an S-expression that represents a valid value

λ

λ

CS450 ☽ Language λS: slow function calls ☽ Lecture 17 ☽ Tiago Cogumbreiro 26 / 27

Test-cases

; a number is a value, so we just return it
(check-r:eval? 1 1)
; a lambda is a value, so we just return it
(check-r:eval? '(lambda (x) x) '(lambda (x) x))
; function application
(check-r:eval? '((lambda (x) x) 10) 10)
; function application that returns a lambda and replaces a variable
(check-r:eval? '((lambda (y) (lambda (x) y)) 1) '(lambda (x) 1))

More examples

The University of Birmingham: Principles of Programming Languages 2009

Church encoding, Wikipedia

CS450 ☽ Language λS: slow function calls ☽ Lecture 17 ☽ Tiago Cogumbreiro 27 / 27

https://www.ics.uci.edu/~lopes/teaching/inf212W12/readings/lambda-calculus-handout.pdf
https://en.wikipedia.org/wiki/Church_encoding

