CS450

Structure of Higher Level Languages

Lecture 5: Lists; quoting

Tiago Cogumbreiro

CS450) Lists; quoting) Lecture5) Tiago Cogumbreiro

Today we will learn... ?/11

e Being successful in CS 450

e Defining user data-structures
e Serializing code with quote

o Exercises with lists

CS450) Lists; quoting) Lecture5) Tiago Cogumbreiro

User data-structures

User data-structures ?/11

We can represent data-structures using pairs/lists.
For instance, let us build a 3-D point data type.

(require rackunit)

(define p (point 1 2 3))
(check-true (point? p))
(check-equal? (1ist 1 2 3) p)
(check-equal? 1 (point-x p))
(check-equal? 2 (point-y p))
(check-equal? 3 (point-z p))
(check-true (origin? (list @ @ 9)))
(check-false (origin? p))

CS450) Lists; quoting) Lecture5) Tiago Cogumbreiro

User data-structures ?/11

We can represent data-structures using pairs/lists.
For instance, let us build a 3-D point data type.

(require rackunit)

(define p (point 1 2 3)) (define (point x y z) (list x y z))
(check-true (point? p)) (define (point? x)

(check-equal? (1ist 1 2 3) p) (and (1ist? x)

(check-equal? 1 (point-x p)) (= (length x) 3)))
(check-equal? 2 (point-y p))

(check-equal? 3 (point-z p)) (define (point-x pt) (first pt))
(check-true (origin? (list @ @ 9))) (define (point-y pt) (second pt))
(check-false (origin? p)) (define (point-z pt) (third pt))

(define (origin? p) (equal? p (list @ @ 9))

CS450) Lists; quoting) Lecture5) Tiago Cogumbreiro

On data-structures ?/11

o We only specified immutable data structures

o The effect of updating a data-structure is encoded by creating/copying a data-
structure

e This pattern is known as a persistent data structure

CS450) Lists; quoting) Lecture5 D) Tiago Cogumbreiro

https://en.wikipedia.org/wiki/Persistent_data_structure

Serializing code

Quoting: a specification ?/11

Function (quote e) serializes expression e. Note that expression e is not evaluated.

e A variable x becomes a symbol 'x. You can consider a symbol to be a special kind of
string in Racket. You can test if an expression is a symbol with function symbol?

« A function application (e; - - - €,,) becomes a list of the serialization of each e;.

o Serializing a (define x e) yields a list with: symbol 'define, the serialization of variable x,
and the serialization of e. Serializing (define (x; - - - @) €) yields a list with symbol
'define followed by a nonempty list of symbols x; followed by serialized e.

e Serializing (lambda (x1...x,) €) yields a list with symbol ' lambda, followed by a
possibly-empty list of symbols x;, and the serialized expression e.

« Serializing a (cond (b; €1) - - - (b, €,)) becomes a list with symbol 'cond followed by a
serialized branch. Each branch is a list with two components: serialized expression b; and
serialized expression e;.

CS450) Lists; quoting) Lecture5 D) Tiago Cogumbreiro

Quoting exercises: 7

BOSTON

We can write 'term rather than (quote term)

How do we serialize term (lambda (x) x) with quote?

How do we serialize term (+ 1 2) with quote?

How do we serialize term (cond [(> 10 x) x] [else #f]) with quote?
Can we serialize a syntactically invalid Racket program?

CS450) Lists; quoting) Lecture5 D) Tiago Cogumbreiro

Quoting exercises: ?/11

e We can write 'term rather than (quote term)

e How do we serialize term (lambda (x) x) with quote?

e How do we serialize term (+ 1 2) with quote?

« How do we serialize term (cond [(> 10 x) x] [else #f]) with quote?

o Can we serialize a syntactically invalid Racket program? No! You would not be able to
serialize this expression (. Quote only accepts a S-expressions (parenthesis must be
well-balanced, identifiers must be valid Racket identifiers, number literals must be valid).

o Canwe serialize aninvalid Racket program?

CS450) Lists; quoting) Lecture5) Tiago Cogumbreiro

Quoting exercises: ?/11

e We can write 'term rather than (quote term)

e How do we serialize term (lambda (x) x) with quote?

o How do we serialize term (+ 1 2) with quote?

e How do we serialize term (cond [(> 10 x) x] [else #f]) with quote?

o Can we serialize a syntactically invalid Racket program? No! You would not be able to
serialize this expression (. Quote only accepts a S-expressions (parenthesis must be
well-balanced, identifiers must be valid Racket identifiers, number literals must be valid).

o Canwe serialize aninvalid Racket program? Yes. For instance, try to quote the term:
(1ambda)

CS450) Lists; quoting) Lecture5 D) Tiago Cogumbreiro

Quote example 7

BOSTON

#lang racket

(require rackunit)

(check-equal? 3 (quote 3))

(check-equal? 'x (quote x))

(check-equal? (list '+ 1 2) (quote (+ 1 2)))

(check-equal? (1list 'lambda (list 'x) 'x) (quote (lambda (x) x)))
(check-equal? (list 'define (list 'x)) (quote (define (x))))

CS450) Lists; quoting) Lecture5) Tiago Cogumbreiro

Manipulating quoted terms ?/11

Specification On HW1 Q.4

e The input format of the quoted
term are precisely described in
the slides of Lecture 3

How do we get the parameter list? e You do not need to test

How do we get the body? recursively if the terms in the
What does variable* mean? body of a function declaration
What does termt mean? or definition are valid.

' e A list, with one symbol lambda
followed by zero or more
symbols, and one or more
terms.

function-dec = (lambda (variable*) term+)

CS450) Lists; quoting) Lecture5) Tiago Cogumbreiro

-Xxercises with lists

Lists: example 1 ?/11

Summation of all elements of a list
Spec

(require rackunit)
(check-equal? 10 (sum-list (list 1 2 3 4)))
(check-equal? @ (sum-list (list)))

CS450) Lists; quoting) Lecture5 D) Tiago Cogumbreiro

Lists: example 1 ?/11

Summation of all elements of a list
Spec

(require rackunit)
(check-equal? 10 (sum-list (list 1 2 3 4)))
(check-equal? @ (sum-list (list)))

Solution

flang racket

(define (sum-list 1)
(cond [(empty? 1) 0]
[else (+ (first 1) (sum-list (rest 1)))]))

CS450) Lists; quoting) Lecture5) Tiago Cogumbreiro

Lists: example 2 ?/11

Returns a list from n down to 1
Spec

(require rackunit)
(check-equal? (1ist) (count-down 9))
(check-equal? (list 3 2 1) (count-down 3))

CS450) Lists; quoting) Lecture5 D) Tiago Cogumbreiro

.

UMASS

Lists: example 2

Returns a list from n down to 1
Spec

(require rackunit)
(check-equal? (1ist) (count-down 9))
(check-equal? (list 3 2 1) (count-down 3))

Solution

flang racket
(define (count-down n)

(cond [(= n @) (1list)]
[else (cons n (count-down (- n 1)))]))

CS450) Lists; quoting) Lecture5 D) Tiago Cogumbreiro

Lists: example 3 7

BOSTON

Point-wise pairing of two lists
Spec

(require rackunit)

(check-equal? (list (cons 3 38) (cons 2 20) (cons 1 10))
(zip (list 3 2 1) (1ist 30 20 10)))

(check-equal? (list (cons 3 38) (cons 2 20) (cons 1 10))
(zip (list 32 1) (list 30 20 16 543 2 1)))

(check-equal? (1list (cons 3 38) (cons 2 20) (cons 1 10))
(zip (list 32 1 90 180 270) (1list 30 20 10)))

CS450) Lists; quoting) Lecture5) Tiago Cogumbreiro

Lists: example 3 ?/11

Point-wise pairing of two lists

CS450) Lists; quoting) Lecture5) Tiago Cogumbreiro

Lists: example 3 ?/11

Point-wise pairing of two lists
Solution

#lang racket
(define list-add cons) (define pair cons)
(define (zip 11 12)
(cond [(empty? 11) (list)]
[(empty? 12) (list)]
[else
(1ist-add
(pair (first 11) (first 12))
(zip (rest 11) (rest 12)))1))

CS450) Lists; quoting) Lecture5 D) Tiago Cogumbreiro

