
CS450

Structure of Higher Level Languages

Lecture 4: Pairs and lists

Tiago Cogumbreiro

CS450  ☽  Pairs and lists  ☽  Lecture 4  ☽  Tiago Cogumbreiro 1 / 25



Being successful in CS 450

2 / 25



Forum questions policy
1. Private questions (Discord) have the lowest priority

2. Instructor/TAs cannot comment on why a student's submission is not working

3. If a student lists which test-cases have been used, then the instructor/TAs can give more
inputs or test cases

4. Private questions regarding code must always be accompanied with the URL of latest
Gradescope submission

5. Students cannot share their solutions (partial/full) in public posts

CS450  ☽  Pairs and lists  ☽  Lecture 4  ☽  Tiago Cogumbreiro 3 / 25



The �nal grade is given by the instructor

(not by the autograder)

We are grading the correctness of a solution

The autograder only approximates your grade

Students may request for manual grading

Grading partial solutions automatically is hard:

Solution may be using disallowed functions

Solution may be tricking the autograder system

CS450  ☽  Pairs and lists  ☽  Lecture 4  ☽  Tiago Cogumbreiro 4 / 25



Tip #1: avoid �ghting the autograder
1. It's not personal: The autograder is not against you

2. It's not picky: The autograder is not against one speci�c solution

3. Correlation is not causation: Having a colleague with the same problem as you have, 
does not imply that the autograder is wrong

4. Spend your time wisely: don't spend it thinking the autograder is wrong

Instead, discuss

1. Use the autograder for your bene�t: submit solution to test your hypothesis

2. Think before resubmitting: try explaining your solution to someone

3. Ask before resubmitting: write test cases and discuss those test cases with others

5% of your grade is participation, so discuss!

CS450  ☽  Pairs and lists  ☽  Lecture 4  ☽  Tiago Cogumbreiro 5 / 25



Tip #2: participate
5% of your grade is participation

Software engineering and academic life is about communication: you are expected to
interact to solve your homework assignments.

1. Exercises are explained succinctly on purpose: ask questions to know more

2. Exercises have few test cases on purpose: share test-cases to know more

Make time in your schedule to interact

CS450  ☽  Pairs and lists  ☽  Lecture 4  ☽  Tiago Cogumbreiro 6 / 25



Tip #3: time management
Work on your homework assignment incrementally

after each class you can solve a new exercise (with few exceptions)

when you get stuck in an exercise: (1) ask in our forum, and while you are waiting
(2) continue working on other exercises

don't leave everything to the weekend before submission

CS450  ☽  Pairs and lists  ☽  Lecture 4  ☽  Tiago Cogumbreiro 7 / 25



Tip #4: learn to ask questions

The better your formulate a question,

The faster you will get an answer

Ask yourself

1. Which slides do you think the exercise relates to?

2. Which test-cases have you tried that counter your intuition?

Asking question

1. Describe the problem you are having (relate exercise and lessons)

2. Explain your attempts at �xing the problem (list used tests)

CS450  ☽  Pairs and lists  ☽  Lecture 4  ☽  Tiago Cogumbreiro 8 / 25



Overview

9 / 25



Today we will learn…
data structures as constructors and accessors

pairs

lists

user-data structures

CS450  ☽  Pairs and lists  ☽  Lecture 4  ☽  Tiago Cogumbreiro 10 / 25



Function de�nition
Racket introduces a shorthand notation for de�ning functions.

( define (variable+ ) term+ )

A function de�nition expects one or more variables (symbols). The �rst variable is the
function variable. The remaining variables are the arguments of the function declaration.
The one-or-more terms consist of the body of the function declaration.

Which is a short-hand for:

( define variable (lambda ( variable* ) term+ ))

CS450  ☽  Pairs and lists  ☽  Lecture 4  ☽  Tiago Cogumbreiro 11 / 25



Exercise
The McCarthy 91 function was invented by computer scientist John McCarthy to motivate
formal veri�cation.

Implement the function in Racket

What is ?

M(n) = n− 10 if n > 100
M(n) =M(M(n+ 11)) if n ≤ 100

M(99)

CS450  ☽  Pairs and lists  ☽  Lecture 4  ☽  Tiago Cogumbreiro 12 / 25



Exercise
The McCarthy 91 function was invented by computer scientist John McCarthy to motivate
formal veri�cation.

Implement the function in Racket

What is ?

The McCarthy 91 function is equivalent to

M(n) = n− 10 if n > 100
M(n) =M(M(n+ 11)) if n ≤ 100

M(99)

M(n) = n− 10 if n > 100
M(n) = 91 if n ≤ 100

CS450  ☽  Pairs and lists  ☽  Lecture 4  ☽  Tiago Cogumbreiro 12 / 25



Data structures

13 / 25



Data structures
When presenting each data structure we will introduce two sets of functions:

Constructors: functions needed to build the data structure

Accessors: functions needed to retrieve each component of the data structure. Also
known as selectors.

Each example we discuss is prefaced by some unit tests. We are following a Test Driven
Development methodology.

CS450  ☽  Pairs and lists  ☽  Lecture 4  ☽  Tiago Cogumbreiro 14 / 25



Pairs

15 / 25



Example

#lang racket
(cons (+ 1 2) (* 2 3))

Output

$ racket pair.rkt
'(3 . 6)

The pair datatype
Constructor: cons

expression =  | pair 
pair = (cons expression expression ) 

Function cons constructs a pair with the evaluation of the arguments, which Racket prints
as: '(v1 . v2)
 

⋯

CS450  ☽  Pairs and lists  ☽  Lecture 4  ☽  Tiago Cogumbreiro 16 / 25



#lang racket
(define pair (cons (+ 1 2) (* 2 3)))
(car pair)
(cdr pair)

$ racket pair.rkt
3
6

The pair datatype
Accessors: car and cdr

Function car returns the left-hand-side element (the �rst element) of the pair.

Function cdr returns the right-hand-side element (the second element) of the pair.

Example

CS450  ☽  Pairs and lists  ☽  Lecture 4  ☽  Tiago Cogumbreiro 17 / 25



Spec

; Paste this at the end of "pairs.rkt"
(require rackunit)
(check-equal?
  (cons 2 1)
  (pair-swap (cons 1 2)))

Pairs: example 1
Swap the elements of a pair: (pair-swap p)

CS450  ☽  Pairs and lists  ☽  Lecture 4  ☽  Tiago Cogumbreiro 18 / 25



Spec

; Paste this at the end of "pairs.rkt"
(require rackunit)
(check-equal?
  (cons 2 1)
  (pair-swap (cons 1 2)))

Solution

#lang racket
(define (pair-swap p)
  (cons
    (cdr p)
    (car p)))

Pairs: example 1
Swap the elements of a pair: (pair-swap p)

CS450  ☽  Pairs and lists  ☽  Lecture 4  ☽  Tiago Cogumbreiro 18 / 25



Unit test

(require rackunit)
(check-equal?
  (cons 4 6)
  (pair+ (cons 1 2) (cons 3 4)))

Pairs: example 2
Point-wise addition of two pairs: (pair+ l r)

CS450  ☽  Pairs and lists  ☽  Lecture 4  ☽  Tiago Cogumbreiro 19 / 25



Unit test

(require rackunit)
(check-equal?
  (cons 4 6)
  (pair+ (cons 1 2) (cons 3 4)))

Solution

#lang racket
(define (pair+ l r)
  (cons (+ (car l) (car r))
        (+ (cdr l) (cdr r)))))

Pairs: example 2
Point-wise addition of two pairs: (pair+ l r)

CS450  ☽  Pairs and lists  ☽  Lecture 4  ☽  Tiago Cogumbreiro 19 / 25



Pairs: example 3
Lexicographical ordering of a pair

(require rackunit)
(check-true (pair< (cons 1 3) (cons 2 3)))
(check-true (pair< (cons 1 2) (cons 1 3)))
(check-false (pair< (cons 1 3) (cons 1 3)))
(check-false (pair< (cons 1 3) (cons 1 0)))

CS450  ☽  Pairs and lists  ☽  Lecture 4  ☽  Tiago Cogumbreiro 20 / 25



#lang racket
(define (pair< l r)
  (or (< (car l) (car r))
      (and (= (car l) (car r))
           (< (cdr l) (cdr r)))))

Pairs: example 3
Lexicographical ordering of a pair

(require rackunit)
(check-true (pair< (cons 1 3) (cons 2 3)))
(check-true (pair< (cons 1 2) (cons 1 3)))
(check-false (pair< (cons 1 3) (cons 1 3)))
(check-false (pair< (cons 1 3) (cons 1 0)))

CS450  ☽  Pairs and lists  ☽  Lecture 4  ☽  Tiago Cogumbreiro 20 / 25



Lists

21 / 25



#lang racket
(list (+ 0 1) (+ 0 1 2) (+ 0 1 2 3))
(list)

$ racket list-ex1.rkt 
'(1 3 6)
'()

Lists
Constructor: list

expression =  | list 
list = (list expression* ) 

Function call list constructs a list with the evaluation of a possibly-empty sequence of
expressions e1 up to en as values v1 up to vn which Racket prints as: '(v1 ... v2)

⋯

CS450  ☽  Pairs and lists  ☽  Lecture 4  ☽  Tiago Cogumbreiro 22 / 25



Accessing lists
Accessor: empty?
You can test if a list is empty with function empty?. An empty list is printed as '().

#lang racket
(require rackunit)
(check-false (empty? (list (+ 0 1) (+ 0 1 2) (+ 0 1 2 3))))
(check-true (empty? (list)))

CS450  ☽  Pairs and lists  ☽  Lecture 4  ☽  Tiago Cogumbreiro 23 / 25



Accessors: car, cdr
Lists in Racket are implemented as a
linked-list using pairs terminated by the
empty list '().

Function car returns the head of the list,
given a nonempty list.
car originally meant Contents of
Address Register.

Function cdr returns the tail of the list,
given a nonempty list.
cdr originally meant Contents of
Decrement Register.

(list 1 2 3 4)

Graphical representation

Textual representation

'(1 .
  '(2 .
    '(3 .
      '(4 . '()))))

Lists are linked-lists of pairs

CS450  ☽  Pairs and lists  ☽  Lecture 4  ☽  Tiago Cogumbreiro 24 / 25



Lists are built from pairs example
Constructor empty

#lang racket
(require rackunit)
(check-equal?
  (cons 1
    (cons 2
      (cons 3
        (cons 4 empty)))) (list 1 2 3 4))

CS450  ☽  Pairs and lists  ☽  Lecture 4  ☽  Tiago Cogumbreiro 25 / 25


