
CS450

Structure of Higher Level Languages

Lecture 1: Course info, arithmetic in Racket

Tiago Cogumbreiro

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 1 / 30

About the course
Instructor: Tiago (蒂亚⼽) Cogumbreiro

Schedule: 3:00pm to 3:50pm, Monday, Wednesday, Friday

Of�ce hours: 1:00pm to 2:00pm, Wednesday, Thursday, Friday

Class structure

Live Q&A session Mondays, 3:00pm to 3:50pm via Zoom

Pre-recorded videos available in YouTube, around class time (3pm, Mo/We/Fr)

Support

Of�ce hours via direct messaging, video conferencing (Discord/Zoom)

Announcements via direct messaging (Discord)

Forum/knowledge base via issue tracker (Gitlab)

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 2 / 30

How we are doing remote teaching
Open door policy, via Discord.

Message me at any time with your questions.

Channel questions answered �rst, direct-messages answered second.

I reply as soon as possible, during of�ce hours in the latest.

Homework assignments we use a grading server (Gradescope)

I record extra videos on demand
Please, don't be afraid to ask!

Course webpage

cogumbreiro.github.io/teaching/cs450/s21/

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 3 / 30

https://cogumbreiro.github.io/teaching/cs450/s21/

Course divided into 8 modules

1 homework assignment per module

Final grade: 95% homework + 5%
participation

Homework grade: average of 8
assignments (possibly weighted)

Participation grade: in-class quizzes,
attendance classroom/online,
participation in forum

To get D- (C-) you need to have at least 7
assignments with D- (C-)

Monday attendance is required!

Grade Letter

95 �� P A

90 �� P < 95 A-

85 �� P < 90 B

75 �� P < 85 B

70 �� P < 75 B-

65 �� P < 70 C+

55 �� P < 65 C

50 �� P < 55 C-

45 �� P < 50 D+

35 �� P < 45 D

30 �� P < 35 D-

30 �� P F

Syllabus
cogumbreiro.github.io/teaching/cs450/s21/syllabus.pdf

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 4 / 30

https://cogumbreiro.github.io/teaching/cs450/s20/syllabus.pdf

Academic dishonesty

5 / 30

Plagiarism in University
Copying code from others is wrong because:

you do not learn

you risk being expelled

you are risking the other person being expelled

you risk not completing your degree

you risk being put on a list of cheaters (other universities may reject your application)

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 6 / 30

Plagiarism in the Industry
Is wrong, because:

it is illegal

you risk being dismissed from employment

you risk being sued

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 7 / 30

Copying code (when it is right)
software licenses de�ne clear rules on
how you can copy, use, and change other people's code

open source promotes sharing of code

attribution is important (unless public domain)

good way to land on a job

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 8 / 30

Plagiarism in CS 450
student's responsibility to learn the Student's code of conduct

we use plagiarism detection (renaming functions is not enough)

we compare against solutions from past years (and instructor)

be careful when working with others, any sharing code may trigger

the plagiarism detection tool can detect code sharing among students

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 9 / 30

Plagiarism in CS 450

Zero Tolerance

statistically, there will be plagiarism this semester

if I contact you regarding plagiarism, there will be zero tolerance:

You will get an F in this course

You will be reported to the university

If you need more time to complete an assignment, ASK

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 10 / 30

Course requirements

11 / 30

Course requirements
Checklist

Install Racket 7.3: racket-lang.org
Sign in on GitLab, comment on issue 1 (invitation by email)

Sign in on Discord, say "Hi" in #general (invitation link in the GitLab page)

Sign in on Gradescope, upload the template hw1.rkt (invitation by email)

Heads up

Please, register using your UMB email address, otherwise you won't be able to submit
your �rst homework.

The deadline of homework assignment n is last class of module n plus 1 week

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 12 / 30

https://racket-lang.org/
https://gitlab.com/cogumbreiro/cs450-s21-qa/-/issues/1

Course overview

13 / 30

This course is NOT…
on algorithms
For a nice free book read Algorithms by Jeff Erickson.

an introduction on programming and computing
For a nice free book read How to design programs by Matthias Felleisen, Robert Bruce
Findler, Matthew Flatt, Shriram Krishnamurthi

on programming with Racket
For a nice free book read The Racket Guide by Matthew Flatt, Robert Bruce Findler, and
PLT

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 14 / 30

http://jeffe.cs.illinois.edu/teaching/algorithms/
https://htdp.org/2018-01-06/Book/
https://docs.racket-lang.org/guide/

This course is…
on designing programming language features
We will focus mainly on functional and object-oriented programming.

on semi-formal speci�cation
We will drive our course with precise mathematical notations and tests.

on programming patterns
We will characterize patterns and study abstractions of these patterns.

on purely functional programming
We will approach programming without using assignment (mutation).

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 15 / 30

Today we will learn
a formalism to describe a programming language (Racket)

the semantics of a programming language

How we will learn it

We introduce one language feature at a time

1. Syntax: We formalize each language feature (What)

2. Example: We illustrate a feature with an example

3. Semantics: We introduce how each language feature works (How)

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 16 / 30

Semantics
Abstract Syntax: how we write something. Example, which characters/string we use
write a keyword, or a number.

Semantics: what that something does/means (evaluation here means as the program
runs)

In this class, we focus on the semantics of programming languages. We de�ne the
semantics of some programming language features.

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 17 / 30

1. We shall not print to output!

Instead, we will use assertions.

2. We shall not mutate variables!

Instead, we will use persistent data structures.

3. We shall not use loops!

Instead, we will use recursion.

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 18 / 30

Your �rst program

19 / 30

Program
In Racket, everything evaluates down to or is a value. A Racket program consists of a
preamble followed by zero or more expressions:

program = #lang racket expression*

1. Racket has no end-of-sentence delimiters (contrary to, say, C-like languages which use
semi-colons)

2. Racket evaluates each expression from top-to-bottom, left-to-right

For space-constraint reasons, code listings might omit the preamble.

Language speci�cation

Grayed out text represents the concrete syntax

Italic text represents a meta-variable

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 20 / 30

Expressions

Expressions can be values, among other things

expression = value | ⋯

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 21 / 30

Values
Numbers

Void

Booleans

Lists

…

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 22 / 30

Numbers

23 / 30

Numbers
All numbers are complex numbers. Some of them are real numbers, and all of the real
numbers that can be represented are also rational numbers, except for +inf.0 (positive
in�nity), +inf.f (single-precision variant), -inf.0 (negative in�nity), -inf.f (single-precision
variant), +nan.0 (not-a-number), and +nan.f (single-precision variant). Among the rational
numbers, some are integers, because round applied to the number produces the same
number.

Source: Racket Manual, Section 4.2

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 24 / 30

https://docs.racket-lang.org/reference/numbers.html

#lang racket
10 ; A positive number
+10 ; The plus sign is optional
-10 ; A negative number
0+1i ; A complex number
1/3 ; A rational number
0.33 ; A floating-point number

$ racket nums.rkt
10
10
-10
0+1i
1/3
0.33

Hello, Numbers!

Your �rst Racket program

Note: a semi-colon (;) initiates a comment section, which is ignored in Racket. A semi-
colon is not a end-of-line marker, like in C-like languages.

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 25 / 30

#lang racket
10
+10
-10
0+1i
1/3
0.33

#lang racket
10 +10 -10 0+1i 1/3 0.33

Expressions are separated by white-space
These two programs are equal:

Caveats: -1 is different than - 1 (notice the white space in between both characters). The
former is the negative one, the latter is the expression - and the value 1. Similarly, 1/3 is a
single rational number, whereas 1 / 3 are three expressions.

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 26 / 30

Function calls

27 / 30

#lang racket
(expt 2 3)
(sin (expt 2 3))

$ racket nums-func.rkt
8
0.9893582466233818

Function call
Delimited by parenthesis and its constituents are separated by white-space characters. The
�rst expression must evaluate to a function, the remaining expressions are the arguments.
Each expression is evaluated to a value from left-to-right before applying the function.

expression = value | variable | function-call |
function-call = (expression-func expression-arg*)

For instance, function call (expt 2 3), for exponentiation, returns 2 raised to the power of 3.
Function sin computes the sine function of its sole argument.

Note: Function calls can be compounded, as the parameters of a function are arguments too.

⋯

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 28 / 30

No in�x notation in Racket
There is NO INFIX NOTATION for arithmetic operations (unlike most languages).

The usual arithmetic operations are all just variables: addition +, subtraction -, multiplication
*, division /.

Example:

(* 3.14159 (* 10 10))
| | | | | | |�> Number
| | | | | |�> Number
| | | | |�> Variable
| | | |�> Function call
| | |�> Number
| |�> Variable
|�> Function call

Note: In Racket parenthesis represent function application. Contrasted with most C-like
languages where parenthesis in expressions are optional and only there to help the
reader.

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 29 / 30

Evaluating a function call
Evaluation works from left-to-right from top-to-bottom

#racket lang
; Version 1:
(* 3.14159 (* 10 10))
; Version 2:
(* 3.14159 100)
; ���- Evaluated (* 10 10)
; Version 3:
314.159
;������- Evaluated (* 3.14159 * 100)

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 30 / 30

