CS450

Structure of Higher Level Languages
Lecture 39: The Essence of JavaScript; Homework FAQ

Tiago Cogumbreiro

Today we will learn... ?/11

o A deeperlookinto "The Essence of JavaScript" paper
e Address some frequently asked questions about HW7 and HWS8

CS450) TheEssence of JavaScript; Homework FAQ) Lecture39) Tiago Cogumbreiro

The Essence of JavaScript

Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi

Brown University

Abstract. We reduce JavaScript to a core calculus structured as a
small-step operational semantics. We present several peculiarities of the
language and show that our calculus models them. We explicate the
desugaring process that turns JavaScript programs into ones in the core.
We demonstrate faithfulness to JavaScript using real-world test suites.
Finally, we illustrate utility by defining a security property, implementing
it as a type system on the core, and extending it to the full language.

cs.brown.edu/research/plt/dl/jssem/v1/gsk-essence-javascript-ré.pdf

http://cs.brown.edu/research/plt/dl/jssem/v1/gsk-essence-javascript-r6.pdf

The Essence of Javascript 7

BOSTON

Abstract. We reduce JavaScript to a core calculus structured as a small-step operational
semantics. We present several peculiarities of the language and show that our calculus
models them. We explicate the desugaring process that turns JavaScript programs into
ones in the core. We demonstrate faithfulness to JavaScript using real-world test suites.
Finally, we illustrate utility by defining a security property, implementing it as a type
system on the core, and extending it to the full language.

CS450) TheEssence of JavaScript; Homework FAQ) Lecture39) Tiago Cogumbreiro

The Essence of JavasScript 7

BOSTON

Abstract. We reduce JavaScript to a core calculus structured as a small-step operational
semantics. We present several peculiarities of the language and show that our calculus
models them. We explicate the desugaring process that turns JavaScript programs into
ones in the core. We demonstrate faithfulness to JavaScript using real-world test suites.
Finally, we illustrate utility by defining a security property, implementing it as a type
system on the core, and extending it to the full language.

1. Introduce LambdalS

CS450) TheEssence of JavaScript; Homework FAQ) Lecture39) Tiago Cogumbreiro

The Essence of JavasScript 7

BOSTON

Abstract. We reduce JavaScript to a core calculus structured as a small-step operational
semantics. We present several peculiarities of the language and show that our calculus
models them. We explicate the desugaring process that turns JavaScript programs into
ones in the core. We demonstrate faithfulness to JavaScript using real-world test suites.
Finally, we illustrate utility by defining a security property, implementing it as a type
system on the core, and extending it to the full language.

1. Introduce LambdalS
2. Present translation from JavaScript to LambdalS

CS450) TheEssence of JavaScript; Homework FAQ) Lecture39) Tiago Cogumbreiro

The Essence of Javascript 7

BOSTON

Abstract. We reduce JavaScript to a core calculus structured as a small-step operational
semantics. We present several peculiarities of the language and show that our calculus
models them. We explicate the desugaring process that turns JavaScript programs into
ones in the core. We demonstrate faithfulness to JavaScript using real-world test suites.
Finally, we illustrate utility by defining a security property, implementing it as a type
system on the core, and extending it to the full language.

1. Introduce LambdalS
2. Present translation from JavaScript to LambdalS
3. Demonstrate faithfulness with test suites

CS450) TheEssence of JavaScript; Homework FAQ) Lecture39) Tiago Cogumbreiro

The Essence of JavasScript 7

BOSTON

Abstract. We reduce JavaScript to a core calculus structured as a small-step operational
semantics. We present several peculiarities of the language and show that our calculus
models them. We explicate the desugaring process that turns JavaScript programs into
ones in the core. We demonstrate faithfulness to JavaScript using real-world test suites.
Finally, we illustrate utility by defining a security property, implementing it as a type
system on the core, and extending it to the full language.

1. Introduce LambdalS

2. Present translation from JavaScript to LambdalS

3. Demonstrate faithfulness with test suites

4. [llustrate utility of LambdalS with a language extension.

CS450) TheEssence of JavaScript; Homework FAQ) Lecture39) Tiago Cogumbreiro

¢ = num | str | bool | undefined | null
v=c|func(z---) { return e } | { str:v--- }
e=zxz|v|let (x =€) e| ele---) |elel | ele]l = e delete el[e]
E=ellet (x = FE) e|ECe--) |v(v--- E, e--+)
str: v--- str:E, strie--- Y| Ele]l |v[E] | Elel = e|vlE] = ¢
= FE | delete E[e] | delete v[F]

let (z = v) e e[z/v] (E-LET)
(func(zy---zn) { return e }) (v1---vy) — efz1/v1---an/vn] (E-APP)
{ --str: v Ystr]l —v (E-GETFIELD)

stry & (stry - - stry)

- — — (E-GETFIELD-NOTFOUND)
{ stri: v1 -+ strp: vy, } [stry] — undefined

{ stri: vi--- stry: vy ---Strp: vy ¥ [stri] =
—{ stri: vi--- stri: v ---strp: v, }

v (E-UPDATEFIELD)

Stry strq - - -

Fln) (E-CREATEFIELD)

torecs ¥ [stre]l = vp = { strg: v, stri: vi--- }

delete { stri: vi--- stro: ve -oostrat ve 3o [strs] (E-DELETEFIELD)
— { St‘r’l C U1 -S’f'rn I Un }

Stry Q (51‘,711 ..)

- - (E-DELETEFIELD-NOTFOUND)
delete { stri: vi--- } [stry]l < { stri: vi--- }

The Essence of JavaScript ?/11

e LambdalS (implemented in Racket)

Translator from JS to A-JS (Haskell)

Coq formal semantics

OCaml interpreter and translator (ECMAScript 5)
Code: github.com/brownplt/LambdalS

Code: github.com/brownplt/LambdaS5

CS450) TheEssence of JavaScript; Homework FAQ) Lecture39) Tiago Cogumbreiro

https://github.com/brownplt/LambdaJS/tree/master/Redex
https://github.com/brownplt/LambdaJS/tree/master/haskell
https://github.com/brownplt/LambdaJS/tree/master/coq
https://github.com/brownplt/LambdaS5
https://github.com/brownplt/LambdaJS
https://github.com/brownplt/LambdaS5

Desugar code review: field lookup ?/11

expr :: Env = Expression SourcePos —> ExprPos
expr env e = case e of

ThisRef a — EId a "this"
VarRef _ (Id - s) — eVarRef env s
DotRef al e (Id a2 s) — EGetField a1l (EDeref nopos $ toObject $ expr env e)
(EString a2 s)
BracketRef a el e2 —
EGetField a (EDeref nopos $ toObject $ expr env e1) (toString $ expr env e2)
NewExpr _ eConstr es — eNew (expr env eConstr) (map (expr env) es)

J[z.y] = (deref z)["y"]

Source

CS450) TheEssence of JavaScript; Homework FAQ Y Lecture39) Tiago Cogumbreiro

https://github.com/brownplt/LambdaJS/blob/d254442be3e2908191ef21b6d7560d66d30868d5/haskell/src/Language/LambdaJS/Desugar.hs#L271-L274

Desugar code review: calls/invocations ?/11

applyObj :: ExprPos — ExprPos — [ExprPos] — ExprPos
applyObj efuncobj ethis es = ELet1 nopos efuncobj $ \x —
EApp
(label efuncobj)
(EGetField
(label ethis)
(EDeref nopos $ EId nopos x)
(EString nopos "$code"))
[ethis, args x]
where args x = ERef nopos $ ERef nopos $ eArgumentsObj es (EId nopos x)

J[z.y(e---)]] = (deref (deref z)["y"])["$code"|(z,I[e---])

Source

CS450) TheEssence of JavaScript; Homework FAQ) Lecture39) Tiago Cogumbreiro

https://github.com/brownplt/LambdaJS/blob/d254442be3e2908191ef21b6d7560d66d30868d5/haskell/src/Language/LambdaJS/Desugar.hs#L104-L107

L ambdalS: Formal specitication

LambdalS: Object semantics ?/11

Vs.0(s) = undef
{} 40

€o llE O Ef UE S
eoles] Vg lookup(O, s)

eole O erllps e lgv
e.ler] = ey, Ug Ols — v]

E-empty

(E-get)

(E-set)

CS450) TheEssence of JavaScript; Homework FAQ) Lecture39) Tiago Cogumbreiro

LambdalS: Heap operations ?/11

el v [< allocwv
alloce | [

el l
deref e || get [

e Jg ! es g v put [v
€1 :IBQU/Z

CS450) TheEssence of JavaScript; Homework FAQ Y Lecture39) Tiago Cogumbreiro

Lookup with references ?/11

O = get ! s €O O =get | s¢ O *$proto’ ¢ O
lookup(l, s) = O(s) lookup(l, s) = undef

O =get s¢ 0 O(’$proto’) =1
lookup(l, s) = lookup(?', s)

Definition

Field membership: Let s ¢ O if, and only, O(s) = undef, otherwise we say that s € O.

CS450) TheEssence of JavaScript; Homework FAQ) Lecture39) Tiago Cogumbreiro

Homework assignment questions

13/31

HW /7 question ?/11

| What is the major difference between an eff and an eff-op?

CS450) TheEssence of JavaScript; Homework FAQ Y Lecture39) Tiago Cogumbreiro

HW /7 question 7

UMASS
BOSTON

| What is the major difference between an eff and an eff-op?

Answer

Let uslook at hw/7-util.rkt:

(struct eff (state result) ft:transparent)
(struct eff-op (func))

o effis the return of effectful operations

o eff-op a structure that holds an effectful operation, takes a state (eg, a heap) and
produces an eff

Examples of effectful operations eff-op: eff-bind, eff-pure, env-put, env-get, env-push

CS450) TheEssence of JavaScript; Homework FAQ) Lecture39) Tiago Cogumbreiro

HW?7 question 2
| How do | test for if? How do | know if the term is curried?

ecdp#t » er | vy (E-if-f) e. Vg v vE#E » e | v

(@t e er) ef) bz vy (GEede)e) o o0

CS450) TheEssence of JavaScript; Homework FAQ) Lecture39) Tiago Cogumbreiro

HW /7 question ?/11

| How do | test for if? How do | know if the term is curried?

eedp#t » er | vy , e. Vg v vE#E » e | v _

(E-if-f) (E-if-t)
(Qfe)e) es) bpvy ((f e.) &) e7) bm v :
Answer

1. Use pattern matching with nested a pattern before the branch for apply.
2. Terms being evaluated are always curried.

CS450) TheEssence of JavaScript; Homework FAQ Y Lecture39) Tiago Cogumbreiro

Match examples ?/11

(match exp
[(? s:value? x) x]
[x #:when (s:value? x) x]

[(s:variable 'x)
'patterni]

[(s:lambda (list (s:variable _)) _)
'pattern2]

[(s:closure _ (s:lambda (list x) eb))
'pattern3]

[(s:apply (s:apply (s:variable 'x) (list (s:number 1))) (list (s:variable foo0)))
'pattern4])

CS450) TheEssence of JavaScript; Homework FAQ) Lecture39) Tiago Cogumbreiro

HW&8 question ?/11
| What does A(this, x - - -). [e] mean?

J[function(z---) {e}] =
alloc {"$code" : A(this,x---).J[e], "prototype" : alloc {}}

CS450) TheEssence of JavaScript; Homework FAQ) Lecture39) Tiago Cogumbreiro

HW&8 question ?/11
| What does A(this, x - - -). [e] mean?

J[function(z---) {e}] =
alloc {"$code" : A(this,x---).J[e], "prototype" : alloc {}}

Answer

Generate alambda, whose

1. parameters are this, x - - -, so translate the original parameters x, - - - and add a variable
this
2. body is the translation of e

CS450) TheEssence of JavaScript; Homework FAQ) Lecture39) Tiago Cogumbreiro

HW&8 question ?/11

(let ([js-set!
(1ambda (o f d)
(begin (set! o (update-field (deref o) f d)) d))])
(alloc (object
["$code"
(1lambda (this x vy)
(begin (js-set! this "x" x)
(js-set! this "y" y)))]
["prototype" (alloc (object))])))

| Whatis js-set!?

CS450) TheEssence of JavaScript; Homework FAQ) Lecture39) Tiago Cogumbreiro

HW&8 question ?/11

(let ([js-set!
(1ambda (o f d)
(begin (set! o (update-field (deref o) f d)) d))])
(alloc (object
["$code"
(lambda (this x vy)
(begin (js-set! this "x" x)
(js-set! this "y" y)))]
["prototype" (alloc (object))])))

| Whatis js-set!?

Answer

« The generated code did not fit the slide, think of it as the translation of (set! o.f a).l
have highlighted in yellow the code being generated.

CS450) TheEssence of JavaScript; Homework FAQ Y Lecture39) Tiago Cogumbreiro

HW&8 question ?/11

| What is the difference between $proto and prototype?

CS450) TheEssence of JavaScript; Homework FAQ) Lecture39) Tiago Cogumbreiro

HW&8 question ?/11

| What is the difference between $proto and prototype?

Answer

1. $proto is a field used for looking up the super object (the parent); works on any object. In
JavaScript thisis __proto__, in LambdalsS this is $proto.

2.prototype is the field of every function, used by new to initialize the $proto field of
created objects

function A () {this.a = 1;}
A.prototype = {"__proto__": {"b": 10, "c": 10, "a": 10}, "b": 20}
a = new A;

CS450) TheEssence of JavaScript; Homework FAQ Y Lecture39) Tiago Cogumbreiro

.

UMASS
BOSTON

CS450) TheEssence of JavaScript; Homework FAQ Y Lecture39) Tiago Cogumbreiro

Functional parallelism

Parallelism with asynchronous evaluation ?/11

| Theideais similar to delay/force

1. (future t) evaluates a thunk t in another task, possibly by another processor
2. Calling (future t) returns a future value f, a place holder to a parallel computation

3. One can await the termination of the parallel task with (touch f), which blocks the
current task until the task evaluating the future thunk terminates. Consecutive (touch f)
are nonblocking.

(define f (thunk (sleep 2) 99))
(assert-equals? (touch f) 99)
(touch f)

CS450) TheEssence of JavaScript; Homework FAQ) Lecture39) Tiago Cogumbreiro

A parallel fold ?/11

(define (par-reduce f init v lo hi)
(if (< (- lo hi) threshold)

(foldl f init (vector-view v lo hi))

(let* ([mid (floor (+ (/ 1o 2) (/ hi 2)))]
[1 (future (thunk (par-reduce f init v lo mid)))]
[r (par-reduce f init v mid hi)])

(f (touch 1) r))))
Map-reduce example

(f
(f
(foldl f O [0 ... 64])
(foldl f @ [64 ... 128]))
(foldl £ @ [128 ... 192]))

CS450) TheEssence of JavaScript; Homework FAQ) Lecture39) Tiago Cogumbreiro

Example of parallel reduce ?/11

(define (f x v)

(/ (- (+ (- (x2)yy25) xyb56) x 36) 2))
(define (do-par 1)

(par-reduce f @ (list—>vector 1)))
(define (do-seq 1)

(foldl f 0 1))

CS450) TheEssence of JavaScript; Homework FAQ Y Lecture39) Tiago Cogumbreiro

Example of parallel reduce ?/11

(define (f x v)

(/ (- (+ (- (x2)yy25) xyb56) x 36) 2))
(define (do-par 1)

(par-reduce f @ (list—>vector 1)))
(define (do-seq 1)

(foldl f 0 1))

Output

Processing a list of size: 10000

* Serial version *

Throughoutput: 25 elems/ms
Mean: 402.03+9.89ms

* Parallel version *

Throughoutput: 25 elems/ms
Mean: 392.76+13.2ms

CS450) TheEssence of JavaScript; Homework FAQ Y Lecture39) Tiago Cogumbreiro

Parallelism In

®

Racket

25/31

Let us try Clojurel

Parallel reduce ?/11

(defn do-reduce [f 1 treshold]
(proxy [RecursiveTask] []
(compute []
(if (= (count 1) treshold)

(reduce f @ 1)

(let [half (quot (count 1) 2)
f1 (do-reduce f (subvec 1 @ half) treshold)
f2 (do-reduce f (subvec 1 half) treshold)]

(.fork f2)

(f (.compute f1) (.join 2)))))))

CS450) TheEssence of JavaScript; Homework FAQ) Lecture39) Tiago Cogumbreiro

Demo ?/11

Clojure 1.10
OpenJDK 1.8.0_191
Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz

4 cores
list with 1,000,000 elements

CS450) TheEssence of JavaScript; Homework FAQ) Lecture39) Tiago Cogumbreiro

Demo ?/11

Clojure 1.10
OpenJDK 1.8.0_191
Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz

4 cores
list with 1,000,000 elements

Serial version

"Elapsed time: 2769.94558 msecs"
Parallel version

"Elapsed time: 755.341055 msecs"

3. /% Increasel

CS450) TheEssence of JavaScript; Homework FAQ) Lecture39) Tiago Cogumbreiro

Demo 2 ?/11

| Letus vary the parameter being used...

CS450) TheEssence of JavaScript; Homework FAQ) Lecture39) Tiago Cogumbreiro

Demo ? %

UMASS
BOSTON

| Letus vary the parameter being used...

Serial version

"Elapsed time: 101.96357 msecs"
Parallel version

"Elapsed time: 219.819163 msecs"

2.0x slowerl

Parallel overhead is significant!

CS450) TheEssence of JavaScript; Homework FAQ) Lecture39) Tiago Cogumbreiro

Demo 3 ?/11

| Let us vary the size of the data being used: 100,000 elements rather than 1,000,000

CS450) TheEssence of JavaScript; Homework FAQ) Lecture39) Tiago Cogumbreiro

Demo 3 7

UMASS
BOSTON

| Let us vary the size of the data being used: 100,000 elements rather than 1,000,000

Serial version

"Elapsed time: 179.724932 msecs"
Parallel version

"Elapsed time: 182.837934 msecs"

Data size is also significant!

CS450) TheEssence of JavaScript; Homework FAQ) Lecture39) Tiago Cogumbreiro

Thank youl

