CS450

Structure of Higher Level Languages
Lecture 28: Effectful operations

Tiago Cogumbreiro

Stack machines

The state does not need to be a heap

Stack machines ?/11

Uses a stack of number to represent memory (rather than registers)
Variable-free code

Very compact object code

Examples of (virtual) stack machines: OpenJDK JVM, CPython interpreter

def mult():
X = pop
y = pop
push (x * y)
def prog():
push(2)
push(5)
mult()
push(2)
mult()

CS450) Effectful operations) Lecture28) Tiago Cogumbreiro

A stack-based evaluator umss

Operations

e push(n) = (void)
e pop() = number

State

CS450) Effectful operations) Lecture28) Tiago Cogumbreiro

A stack-based evaluator ?/11

Operations

e push(n) = (void)
e pop() = number

State

e alist of numbers

CS450) Effectful operations) Lecture28) Tiago Cogumbreiro

Implementing pop ?/11

(define (pop)

CS450) Effectful operations) Lecture28 D Tiago Cogumbreiro

Implementing pop ?/11
(define (pop)

(lambda (stack)
(eff (rest stack) (first stack))))

CS450) Effectful operations) Lecture28) Tiago Cogumbreiro

Implementing push ?/11

(define (push n)

CS450) Effectful operations) Lecture28 D Tiago Cogumbreiro

Implementing push ?/11

(define (push n)

(1ambda (stack)
(eff (cons n stack) (void))))

CS450) Effectful operations) Lecture28 D Tiago Cogumbreiro

Implementing mult ?/11

def mult():

X = pop
y = pop
push (x * y)

CS450) Effectful operations) Lecture28) Tiago Cogumbreiro

Implementing mult ?/11

def mult(): (define (mult)
X = pop (bind (pop)
y = pop (1ambda (x)
push (x * vy) (bind (pop)

(1ambda (y)
(push (* x v)))))))

CS450) Effectful operations) Lecture28 D Tiago Cogumbreiro

Implementing prog ?/11

Pseudo Code

def prog():
push(2)
push(5)
mult()
push(2)
mult()

CS450) Effectful operations) Lecture28) Tiago Cogumbreiro

Implementing prog
Pseudo Code

def prog():
push(2)
push(5)
mult()
push(2)
mult()

A,

UMASS
BOSTON

In Racket

(define prog4
(bind (push 2)
(1ambda (x1)
(bind (push 5)
(1ambda (x2)
(bind (mult)
(1ambda (x3)
(bind (push 2)
(1ambda (x4)
(mult))))))))))

(check-equal? (run-state (list) prog4) (list 20))

I Unfortunately, the code appears very nested if we indent it as we usually do. Can we do

better?

CS450) Effectful operations) Lecture28) Tiago Cogumbreiro

Sequencing effectful operators dhass

CS450) Effectful operations) Lecture28) Tiago Cogumbreiro

Sequencing effectful operators ?/11

Solution Revisit prog4

(define (seq2 op1 op2)
(bind op1 (lambda (x) op2)))

(define (seq op . ops)
(cond [(empty? ops) op]
[else (seq2 op (apply seq ops))]))

CS450) Effectful operations) Lecture28 D Tiago Cogumbreiro

A,

Sequencing effectful operators i
Solution Revisit prog4
(define (seq2 op1 op2) (define progb
(bind op1 (lambda (x) op2))) (seq (push 2)
. (push 5)
(define (seq op . ops) (mult)
(cond [(empty? ops) op] (push 2)
[else (seq2 op (apply seq ops))])) (nult)))
(check-equal? (run-state (list) progb)
(1ist 20))
Limitations

The seq operator is a regular function call, which takes expressions as its arguments. This
complicates a situation where we might need to create a temporary variable (say to cache
a result) in the middle of a sea.

CS450) Effectful operations) Lecture28) Tiago Cogumbreiro

Syntactic sugar: the do notation ?/11

Macros can be useful technique to avoid redundant code. In our case, we are using a
macro to avoid syntactic verbosity.

(define-syntax do
(syntax-rules (<)

[(~ mexp) mexp]
[(_ var < mexp rest ...) (bind mexp (lambda (var) (do rest ...)))]

[(_ mexp rest ...) (bind mexp (lambda (_) (do rest ...)))]))

You do not need to understand this code today. We will learn about macros in detail in a
future lesson.

CS450) Effectful operations) Lecture28 D Tiago Cogumbreiro

Syntactic sugar: the do notation ?/11

The do notation allows us to make our code less nested. The cost of using macros is that
they obfuscate the program's semantics.

Before After
(define (mult) (define (mult)

(bind (pop) (do
(1ambda (x) x < (pop)
(bind (pop) < (pop)

(lambda (y) (push (* xv)))
(push (* x v)))))))
Limitations

Similarly to seq, because of how the macro was designed, it takes a sequence of
expressions. Monadic interfaces usually introduce an operator pure to workaround the
issue.

The pure operator ?/11

The pure operator simply converts a pure (hon-effectful) value into an effectful value,
leaving the state unaltered. One useful benefit of this is that it allow us to combine effectful

and pure operations in the same interface.

The pure operator Example
(define (pure v) (define (mult)
(1ambda (st) (do
(eff st v))) x < (pop)
y < (pop)

z < (pure (* xv))
(push z))))

CS450) Effectful operations) Lecture28) Tiago Cogumbreiro

Summary: the monad ?/11

A monad is a functional pattern which can be categorized of two base combinators:

» Bind: combines two effectful operations 07 and 0y9. Operation 07 produces a value that
is consumed by operation 0.

e Pure: Converts a pure value to a monadic operation, which can then be chained with
bind.

| In this course, we will learn that the monadic pattern appears in different contexts.

CS450) Effectful operations) Lecture28) Tiago Cogumbreiro

Summary: the state monad ?/11

o Data: the monadic data is a pair (struct eff) that holds the global state and some result.

e Bind: combines operation 01 with operation o2; after executing o1, we get a new state
and some result that are both fed into operation o0s.

To think...

Monadic function application: can we create a function call where all arguments are
monadic values? What about a monadic map? And a monadic fold?

(d?fine (mult)

do
z < (mapply * (pop) (pop))
(push z)))

CS450) Effectful operations) Lecture28 D Tiago Cogumbreiro

