CS450

Structure of Higher Level Languages
Lecture 27: Mark and sweep; sets; refactoring evaluation

Tiago Cogumbreiro



Garbage Collection

and our iImplementation of Heap




.

Handle creation problem omass
Before garbage collection After garbage collection
'[(Ee . [(x . 10)]) '[(Ee . [(x . 10)])
(E1 . [E0 (x . 20) ]) (E2 . [E0 (x . 30) ])
: (E2 . [E@ (x . 30) ])

| What happens if we allocate some data in the heap above?

(define (heap-alloc h v)
(define new-id (handle (hash-count (heap-data h))))
(define new-heap (heap (hash-set (heap-data h) new-id v)))
(eff new-heap new-id))

CS450 > Mark and sweep; sets; refactoring evaluation ) Lecture27 Y Tiago Cogumbreiro



Handle creation problem ?/11

I What happens if we allocate frame [E@ (x . 9)] (some frame without bidings)?

Before adding a frame

'[(Eo . [(x . 10)])
(E2 . [E0 (x . 30) D]

CS450 > Mark and sweep; sets; refactoring evaluation ) Lecture27 Y Tiago Cogumbreiro



Handle creation problem ?/11

I What happens if we allocate frame [E@ (x . 9)] (some frame without bidings)?

Before adding a frame

'[(Eo . [(x . 10)])
(E2 . [E0 (x . 30) D]

After adding a frame

'[(ee . [(x . 10)])
(B2 . [E8 (x . 9) D]

Using hash-count is not enough!

We must ensure that handle creation plays well with GC

CS450 > Mark and sweep; sets; refactoring evaluation ) Lecture27 Y Tiago Cogumbreiro



Moving versus non-moving garbage collectiong?g«égg

 Non-moving. If garbage collection simply claims unreachable data, then garbage
collection faces the problem of fragmentation (which we noticed in the previous
example)

* Moving. Alternatively, garbage collection may choose to "move" the references around
by placing data in different locations, which handles the problem of fragmentation, but
now it must be able to translate the references in the data

CS450 > Mark and sweep; sets; refactoring evaluation ) Lecture27 Y Tiago Cogumbreiro



Homework 6




Homework 6 %

BOSTON

1. frame-refs given a frame return a set of handles contained in that frame

2.mem-mark given a function that returns the contained handles of an element, and an initial
handle, returns the set of reachable handles (including the initial handle).

3. mem-sweep given a heap and a set of handles returns a new heap which only contains the
handles in the given set.

CS450 > Mark and sweep; sets; refactoring evaluation ) Lecture27 Y Tiago Cogumbreiro




Specitying Mark-and-sweep ?/11

Specifying Mark

Given an initial handle, collect the set of reachable handles.
We say that a handle x directly connects to a handle y if handle y is contained in the

frame addressed by 2. We say that a handle is contained in frame in either situation:

1. If the frame has a parent, then that handle is contained in the frame.

2.1f aclosure is alocal value of the frame, and that closure captures handle z;, then x is
contained in the frame.

CS450 > Mark and sweep; sets; refactoring evaluation ) Lecture27 Y Tiago Cogumbreiro



Specitying Mark ?/11

Homework 6

| Function frame-refs must return the set of contained handles.

Example 1 Example 2
(check-equal? (check-equal?
et e
(EE . 0) '"((x . 9)

(y . (closure E@ (lambda (x) x)))
(z . (closure E1 (lambda (x) x)))
(set (handle @) (handle 1) (handle 2)

(y . (closure E@ (lambda (x) x)))

;) (z . (closure E1 (lambda (x) x))))))

)
) (set (handle @) (handle 1)))

CS450 > Mark and sweep; sets; refactoring evaluation ) Lecture27 Y Tiago Cogumbreiro



Sets in Racket ?/11

(require racket/set)

Constructors

e (set vl v2 v3 ...) creates a (possibly empty) set of values, corresponds to
{v1,v2,v3,...}

e (set-union s1 s2) returns a new set that holds the union of sets s1 and s2, corresponds
to s;1 U 89

e (set-add s x) returns a new set that holds the elements of s and also element x,
corresponds to s U {z}

o (set-subtract s1 s2) returns a new set that consists of all elements that are in s1 but
are notin s2, correspondsto{x | ¢ € s1 Ax ¢ s2}

CS450 > Mark and sweep; sets; refactoring evaluation ) Lecture27 Y Tiago Cogumbreiro



Sets in Racket i
Selectors

o (set-member? s x) returns if x is a member of set s, correspondstox € s

e (set—>1ist s) converts set s into a list
Homework 6

How do you iterate over the values of a frame? You might want to look at function frame-
fold or function frame-values.

CS450 > Mark and sweep; sets; refactoring evaluation ) Lecture27 Y Tiago Cogumbreiro



Specitying Mark-and-sweep ?/11

Specifying Sweep

1. What is the input?

CS450 > Mark and sweep; sets; refactoring evaluation ) Lecture27 Y Tiago Cogumbreiro



Specitying Mark-and-sweep ?/11

Specifying Sweep

1. Whatis the input? heap? and set of handles
2. Which functional pattern?

CS450 > Mark and sweep; sets; refactoring evaluation ) Lecture27 Y Tiago Cogumbreiro



Specitying Mark-and-sweep ?/11

Specifying Sweep

1. What is the input? heap? and set of handles
2. Which functional pattern? A filter. See heap-filter.
3. What are we keeping?

CS450 > Mark and sweep; sets; refactoring evaluation ) Lecture27 Y Tiago Cogumbreiro



Specitying Mark-and-sweep ?/11

Specifying Sweep

1. Whatis the input? heap? and set of handles
2. Which functional pattern? A filter. See heap-filter.
3. What are we keeping? All handles in the input set

CS450 > Mark and sweep; sets; refactoring evaluation ) Lecture27 Y Tiago Cogumbreiro



Today we will... A

e Introduce a functional pattern monads
e Introduce state monads

CS450 > Mark and sweep; sets; refactoring evaluation ) Lecture27 Y Tiago Cogumbreiro



Revisiting our reduction rules ?/11

>y vlgvey

»u er Vg (Ef, Az.ty) »u, e Vg ve »u, By Ef + [z :=v,] »g, t g vy »o,

| Effectful computation can be divided into three categories:

o Side-effect free computation in blue
o Computation that directly produces side effect in red
e Computation that indirectly produces some side-effect in black

We are » chaining » effectful » computations », that is the variables declared on the
left-hand side of » should be accessible in the right-hand side.

CS450 > Mark and sweep; sets; refactoring evaluation ) Lecture27 Y Tiago Cogumbreiro



Refactoring memory-based operations dhass

(define
(define
(define

(define
(define
(define

(define
(define
(define

vi+mem1 (d:eval-exp mem env el))
meml (eff-state vi+mem1))
vl (eff-result vi+mem1))

env2+mem2 (environ-push meml1 env y v1)
env2 (eff-result env2+mem?2))
mem2 (eff-state env2+mem2))

v2+mem3 (d:eval-exp mem2 env2 e2))
mem3 (eff-state v+mem1))
v2 (eff-result v+mem1))

A,

The memory
needs to be
passed along from
one function call
to the next. How
can we refactor
this code so that
some function
does that for us?

CS450 > Mark and sweep; sets; refactoring evaluation ) Lecture27 Y Tiago Cogumbreiro



Refactoring evaluation of application ?/11

(define* v1 (d:eval-exp* env el))
(define® env2 (environ-push* env y v1)

(define* v2 (d:eval-exp* env2 e2))

At each step we separate the result from the state.
Our goal is to abstract the memory threading, that is to refactor away this mechanic
unpacking of the side effect structure.

CS450 > Mark and sweep; sets; refactoring evaluation ) Lecture27 Y Tiago Cogumbreiro



Abstracting the state ?/11

|deal pseudo code

In today's class, we introduce an abstraction that allows us to achieve something similar
to the pseudo-code below. We highlight in yellow effectful definitions and operations.

(define* v1 (d:eval-exp* env el))
(define* env2 (environ-push® env y v1)

(define* v2 (d:eval-exp* env2 e2))

CS450 > Mark and sweep; sets; refactoring evaluation ) Lecture27 ) Tiago Cogumbreiro



Roadmap: abstracting effectful computation ?/11

Combining:
o Effectful operations: s:eval-exp and environ-push, with
o Effectful variable declaration: v1, env2, and v2

(define* v1 (d:eval-exp* env el))
(define* env2 (environ-push® env y v1)

(define® v2 (d:eval-exp* env2 e2))

et lpvi » B+ E+[y:=v]»e g vo

CS450 > Mark and sweep; sets; refactoring evaluation ) Lecture27 Y Tiago Cogumbreiro



A proxy example

Arithmetic on the heap




Example ?/11

Consider a heap of integers. We allocate two integers and then a third integer that holds
the some of the first two.

(define (progl h1)

(define eff-x (heap-alloc h1 1))
(define x (eff-result eff-x))
(define h2 (eff-state eff-x))

(define eff-y (heap-alloc h2 2))
(define y (eff-result eff-y))
(define h3 (eff-state eff-y))

(heap-alloc h3 (+ (heap-get h3 y) (heap-get h3 x))))
(define (run-state h op) (eff-state (op h)))
(define H (heap (hash (handle @) 1 (handle 1) 2 (handle 2) 3)))
(check-equal? (run-state empty-heap progl) H)

CS450 > Mark and sweep; sets; refactoring evaluation ) Lecture27 Y Tiago Cogumbreiro



Fffecttul operations ?/11

o An effectful operation takes a state and returns an effect eff that pairs some state with
some result. An effectful operation is parameterized by the state type and by the result

type.
o Below we define two effectful operations where the state is a heap.
Add Alloc
(define (num x) (define (add x vy)
(1ambda (h) (1ambda (h)
(heap-alloc h x))) (heap-alloc h (+ (heap-get h y) (heap-get h x)))))

Did you know?

e The state (heap) is a parameter, so that we can combine effectful operations.
e Functions num and add each returns an effectful operation

CS450 > Mark and sweep; sets; refactoring evaluation ) Lecture27 Y Tiago Cogumbreiro



Sequencing effectful operations 7

BOSTON

Example The bind operator
(define (prog2 h1) (define (bind o1 02)
(1ambda (h1)
(define eff-x ((num 1) h1)) (define eff-r (o1 h1))
(define x (eff-result eff-x)) (define r (eff-result eff-r))
(define h2 (eff-state eff-x)) (define h2 (eff-state eff-r))

((02 r) h2))
(define eff-y ((num 2) h2))

(define y (eff-result eff-y))
(define h3 (eff-state eff-y))

((add x y) h3))

We highlight in yellow an example of redundant code. Function bind abstracts away the
redundant code.

CS450 > Mark and sweep; sets; refactoring evaluation ) Lecture27 ) Tiago Cogumbreiro




Abstracting with bind

Before

(define (prog2 h1)

(define eff-x ((num 1) h1))
(define x (eff-result eff-x))
(define h2 (eff-state eff-x))

(define eff-y ((num 2) h2))

(define y (eff-result eff-y))
(define h3 (eff-state eff-y))

((add x y) h3))

A,

UMASS
BOSTON

After
(define prog3

(bind (num 1)
(1ambda (x)

(bind (num 2)
(1ambda (y)

(add x y))))))

Using the bind operator we remove redundant code. You can think of bind as a variable

declaration, akin to an effectful define.

CS450 > Mark and sweep; sets; refactoring evaluation ) Lecture27 Y Tiago Cogumbreiro



