
CS450
Structure of Higher Level Languages

Lecture 26: Garbage collection

Tiago Cogumbreiro

1 / 28

Today we will…
Introduce memory management
Reference counting garbage collection
Mark-and-sweep garbage collection

Inspired by Professor Michelle Mills' lecture on garbage collection, Colorado State
University.

CS450 ☽ Garbage collection ☽ Lecture 26 ☽ Tiago Cogumbreiro 2 / 28

http://www.cs.colostate.edu/~mstrout/CS553Fall09/Slides/lecture04-GC.ppt.pdf

Motivation
(eval-term*?
 '[(E0)] 'E0
 ;; Program
 '[(define (f x) (lambda (y) x))
 (f 2)
 (f 10)
 (f 5)]
 ;; Output Value
 '(closure E3 (lambda (y) x))
 ;; Output Memory
 ???)

CS450 ☽ Garbage collection ☽ Lecture 26 ☽ Tiago Cogumbreiro 3 / 28

Motivation
(eval-term*?
 '[(E0)] 'E0
 ;; Program
 '[(define (f x) (lambda (y) x))
 (f 2)
 (f 10)
 (f 5)]
 ;; Output Value
 '(closure E3 (lambda (y) x))
 ;; Output Memory
 '[(E0 . [(f . (closure E0 (lambda (x) (lambda (y) x))))])
 (E1 . [E0 (x . 2)])
 (E2 . [E0 (x . 10)])
 (E3 . [E0 (x . 5)])])

CS450 ☽ Garbage collection ☽ Lecture 26 ☽ Tiago Cogumbreiro 4 / 28

Motivation
(eval-term*?
 ;; Input memory
 '[(E0)]
 ;; Env
 'E0
 ;; Program
 '[(define (f x) (lambda (y) x))
 (f 2)
 (f 10)
 (f 5)
 (f 99)
 (f 98)]
 ;; Output Value
 '(closure ?? (lambda (y) x))
 ;; Output Memory
 '[(E0 . [(f . (closure E0 (lambda (x) (lambda (y) x))))])
 (E1 . [E0 (x . 2)])
 (E2 . [E0 (x . 10)])
 (E3 . [E0 (x . 5)])
 ???

CS450 ☽ Garbage collection ☽ Lecture 26 ☽ Tiago Cogumbreiro 5 / 28

Motivation
(eval-term*?
 ;; Input memory
 '[(E0)]
 ;; Env
 'E0
 ;; Program
 '[(define (f x) (lambda (y) x))
 (f 2)
 (f 10)
 (f 5)
 (f 99)
 (f 98)]
 ;; Output Value
 '(closure E5 (lambda (y) x))
 ;; Output Memory
 '[(E0 . [(f . (closure E0 (lambda (x) (lambda (y) x))))])
 (E1 . [E0 (x . 2)])
 (E2 . [E0 (x . 10)])
 (E3 . [E0 (x . 5)])
 (E4 . [E0 (x . 99)])
 (E5 . [E0 (x . 98)])])

CS450 ☽ Garbage collection ☽ Lecture 26 ☽ Tiago Cogumbreiro 6 / 28

Motivation
Whenever we call function f it creates a new function, which allocates a new frame.

Do we need these frames?

CS450 ☽ Garbage collection ☽ Lecture 26 ☽ Tiago Cogumbreiro 7 / 28

Motivation
Whenever we call function f it creates a new function, which allocates a new frame.

Do we need these frames?

Can we reclaim them?

CS450 ☽ Garbage collection ☽ Lecture 26 ☽ Tiago Cogumbreiro 7 / 28

Motivation
Whenever we call function f it creates a new function, which allocates a new frame.

Do we need these frames?

Can we reclaim them?

How do we know if we need these frames?

CS450 ☽ Garbage collection ☽ Lecture 26 ☽ Tiago Cogumbreiro 7 / 28

Memory management

8 / 28

Memory management
Objective: Discard any memory that will not be used in the future

Manual: The programmer explicitly controls when data is reclaimed.
Automatic (Garbage Collection): An algorithm controls when data is reclaimed

CS450 ☽ Garbage collection ☽ Lecture 26 ☽ Tiago Cogumbreiro 9 / 28

Memory management
Soundness: we must only reclaim unneeded data.
Problem: Reclaiming memory too soon leads to dangling references, which gives rise to
crashes or security breaches.
Completeness: we must eventually reclaim unneeded data.
Problem: Forgetting to reclaim memory leads to resource depletion, which gives rise to
memory swapping, slowness, or denial of service.

Quiz
If our garbage collector works by never reclaiming memory. Is it sound? Is it complete?

CS450 ☽ Garbage collection ☽ Lecture 26 ☽ Tiago Cogumbreiro 10 / 28

Memory management challenges

11 / 28

Memory management challenges
The choice between automatic and manual memory management is a balance between
many design constrains:

1. what is the impact of a soundness failure? low impact, then manual
2. what is the impact of a completeness failure? low impact, then automatic
3. how easy to program? easy �> automatic
4. how easy to pro�le? easy �> manual
5. how easy to implement? easy �> manual
6. human intervention? ok �> manual

CS450 ☽ Garbage collection ☽ Lecture 26 ☽ Tiago Cogumbreiro 12 / 28

Manual memory management
Pro: Can be very ef�cient
Pro: Lets the programmer control when memory should be reclaimed (eg, real time
problems, games)
Pro: Implementing manual memory management is generally easier than automatic
memory management
Con: More code to maintain
Con: Ensuring correctness can be dif�cult and hazardous

Did you know?

Rust is an example of a new language that introduces manual memory management that
is assisted by the compiler, which helps in reducing memory-management code and also
enforces correctness. The implementation of this technique is considerably more
involved tha a traditional unsafe memory management.

CS450 ☽ Garbage collection ☽ Lecture 26 ☽ Tiago Cogumbreiro 13 / 28

Automatic memory management
Pro: Less code to maintain
Pro: Memory-management correctness is guaranteed (aka memory safety)
Con: More dif�cult to control when memory should be reclaimed
Con: Implementing automatic memory management is generally more complicated
than manual memory management

Did you know?

1. Researchers are experimenting with extending C# with API's that allow for safe
manual memory management (Parkinson et al, 2017), allowing the programmer to get
the best of both worlds.

2. One of the biggest dif�culties of handling automatic memory management is
parallelism; concurrent garbage collection is one of the most intricate pieces of
technology in programming language development.

CS450 ☽ Garbage collection ☽ Lecture 26 ☽ Tiago Cogumbreiro 14 / 28

https://www.microsoft.com/en-us/research/wp-content/uploads/2017/07/snowflake-extended.pdf

Garbage collection
aka Automatic memory management

Garbage collection must be conservative

How do we know if a piece of memory will be used in the future? The garbage collector
cannot predict the future.

Therefore, garbage collection can only discard memory it can prove that cannot be used.
Proving that some memory is not needed is done by �nding its uses (references).

Did you know?

The garbage collector must be able to iterate over all references in memory. In C any
number can be considered a pointer, which makes C garbage collection unsound by
de�nition. The garbage collector must introduce assumptions. For instance, assume that
numbers will never used as references.

CS450 ☽ Garbage collection ☽ Lecture 26 ☽ Tiago Cogumbreiro 15 / 28

Garbage collection
Overview

Reference counting: incrementally maintain the count of memory usage; when count is
zero reclaim memory (eg, Python, C++, Objective-C, Rust)
Reachability: do a full-memory sweep by following references; unreachable memory is
discarded (eg, Racket, Java, JavaScript)

CS450 ☽ Garbage collection ☽ Lecture 26 ☽ Tiago Cogumbreiro 16 / 28

http://jayconrod.com/posts/55/a-tour-of-v8-garbage-collection

Garbage collection:

Reference counting

17 / 28

Reference counting
Use case: GNOME-Object system

The functions g_object_ref/g_object_unref respectively increase and decrease the
reference count. […]
The reference count is initialized to one by g_object_new which means that the caller is
currently the sole owner of the newly-created reference. When the reference count
reaches zero, that is, when g_object_unref is called by the last client holding a reference to
the object, the dispose and the �nalize class methods are invoked.

Source: gnome.org

CS450 ☽ Garbage collection ☽ Lecture 26 ☽ Tiago Cogumbreiro 18 / 28

https://developer.gnome.org/gobject/stable/gobject-memory.html

Node x = null; Node y = null;
x = new Node(3, null); // o1: 1
y = x; // o1: 2
x = null; // o1: 1
y = x; // o1: 0

Reference counting
1. Map the reference count for each handle in the heap
2. When allocating a handle, that reference is set to 1; increment each reference in the

initial value
3. When updating a handle, decrement each reference in the old value and increment each

reference of the new value
4. If a reference count reaches zero, then that reference is garbage; collect it!

Example

(define h1-eff (heap-alloc h0 (list 3 null))); o1:0
(define h1 (eff-state h1-eff))
(define o1 (eff-result h1-eff))
(define h2 (heap-put h1 x o1)) ; o1:1
(define h3 (heap-put h2 y (heap-get x))) ; o1:2
(define h4 (heap-put h3 x null)) ; o1:1
(define h5 (heap-put h4 y (heap-get x))) ; o1:0

CS450 ☽ Garbage collection ☽ Lecture 26 ☽ Tiago Cogumbreiro 19 / 28

Heap

'[(E0 . [(f . (closure E0 (lambda (x) (lambda (y) x))))])
 (E1 . [E0 (x . 2)])
 (E2 . [E0 (x . 10)])
 (E3 . [E0 (x . 5)])]

Reference counting example (1)
By inspecting the frames allocated in the heap we can compute the reference count of
each handle. We can garbage collect any frame whose reference count is zero. A handle
is referenced by a frame if, and only if, the handle is contained in a frame. If E is a parent
handle in a frame, then it is contained in that frame. If E is the environment of a closure
stored in a local binding of a frame, we say that E is contained in that frame.

Which handles are garbage?

CS450 ☽ Garbage collection ☽ Lecture 26 ☽ Tiago Cogumbreiro 20 / 28

Heap

'[(E0 . [(f . (closure E0 (lambda (x) (lambda (y) x))))])
 (E1 . [E0 (x . 2)])
 (E2 . [E0 (x . 10)])
 (E3 . [E0 (x . 5)])]

Reference count

E0: 4
E1: 0
E2: 0
E3: 0

Reference counting example (1)
By inspecting the frames allocated in the heap we can compute the reference count of
each handle. We can garbage collect any frame whose reference count is zero. A handle
is referenced by a frame if, and only if, the handle is contained in a frame. If E is a parent
handle in a frame, then it is contained in that frame. If E is the environment of a closure
stored in a local binding of a frame, we say that E is contained in that frame.

Which handles are garbage?

We can safely collect E1, E2, and E3.

CS450 ☽ Garbage collection ☽ Lecture 26 ☽ Tiago Cogumbreiro 20 / 28

Reference count example (2)
(eval-term*?
 '[(E0)]
 'E0
 '[
 (define (f x)
 (define (z a) x)
 (lambda (y) (z y)))
 (f 0)
 (f 10)]
 '(closure E2 (lambda (y) (z y)))
 '[(E0 . [(f . (closure E0 (lambda (x) (define (z a) x) (lambda (y) (z y)))))])
 (E1 . [E0 (x . 0) (z . (closure E1 (lambda (a) x)))])
 (E2 . [E0 (x . 10) (z . (closure E2 (lambda (a) x)))])])

CS450 ☽ Garbage collection ☽ Lecture 26 ☽ Tiago Cogumbreiro 21 / 28

Reference count example (2)
(eval-term*?
 '[(E0)]
 'E0
 '[
 (define (f x)
 (define (z a) x)
 (lambda (y) (z y)))
 (f 0)
 (f 10)]
 '(closure E2 (lambda (y) (z y)))
 '[(E0 . [(f . (closure E0 (lambda (x) (define (z a) x) (lambda (y) (z y)))))])
 (E1 . [E0 (x . 0) (z . (closure E1 (lambda (a) x)))])
 (E2 . [E0 (x . 10) (z . (closure E2 (lambda (a) x)))])])

Reference counting

E0: 3 E1: 1 E2: 1

CS450 ☽ Garbage collection ☽ Lecture 26 ☽ Tiago Cogumbreiro 21 / 28

Reference counting
Allocation and update time overhead: must traverse the values being stored for
reference counting update
Reclamation is local and incremental heap becomes fragmented
Cannot handle cyclic data structures
Space overhead: must maintain the reference counting for each handle
Reclamation is predictable: we can infer exactly when memory reclamation is
happening, which is useful for time-sensitive algorithms (such as real time algorithms
and games)

Reference counting is of limited use to us

because frames can have cycles!

CS450 ☽ Garbage collection ☽ Lecture 26 ☽ Tiago Cogumbreiro 22 / 28

Garbage collection:

Reachability

23 / 28

Reachability (aka tracing)
Mark-and-sweep algorithm

1. Mark. Your starting point are your "globals". For each reference, traverse its usages,
while collecting all visited references; avoid cycles.

2. Sweep. Copy all visited references to a new heap and discard old heap.

CS450 ☽ Garbage collection ☽ Lecture 26 ☽ Tiago Cogumbreiro 24 / 28

Heap

'[(E0 . (f closure E0 (lambda (x) (lambda (y) x))))
 (E1 . [E0 (x . 2)])
 (E2 . [E0 (x . 10)])
 (E3 . [E0 (x . 5)])]

Mark-and-sweep example (1)
The heap can represent a graph where we draw a reference-use edge from each key to
each handle in the values. If we start Mark-and-sweep from E0, then we can collect E1, E2,
and E3.

CS450 ☽ Garbage collection ☽ Lecture 26 ☽ Tiago Cogumbreiro 25 / 28

Heap

'[(E0 . (f closure E0 (lambda (x) (lambda (y) x))))
 (E1 . [E0 (x . 2)])
 (E2 . [E0 (x . 10)])
 (E3 . [E0 (x . 5)])]

Mark-and-sweep example (1)
The heap can represent a graph where we draw a reference-use edge from each key to
each handle in the values. If we start Mark-and-sweep from E0, then we can collect E1, E2,
and E3.

E0

E1 E2 E3

CS450 ☽ Garbage collection ☽ Lecture 26 ☽ Tiago Cogumbreiro 25 / 28

Mark-and-sweep example (2)
If we start Mark-and-sweep from E0, then we can safely garbage collect E1 and E2, as it
cannot be reached from any global, that is we cannot reach E1 nor E2 from E0.

Heap

'[(E0 . [(f . (closure E0 (lambda (x) (define (z a) x) (lambda (y) (z y)))))])
 (E1 . [E0 (x . 0) (z . (closure E1 (lambda (a) x)))])
 (E2 . [E0 (x . 10) (z . (closure E2 (lambda (a) x)))])
]

Reference use

E1

E0

E2

CS450 ☽ Garbage collection ☽ Lecture 26 ☽ Tiago Cogumbreiro 26 / 28

Mark-and-sweep summary
No allocation and no update time overhead
Reclamation is global must stop the world must copy all references from one heap to
another; the whole heap must be traversed; no fragmentation
No space overhead per-reference
Space overhead to create new heap
Reclamation is not predictable: garbage collection is a global operation so no
amortization possible

CS450 ☽ Garbage collection ☽ Lecture 26 ☽ Tiago Cogumbreiro 27 / 28

Mark-and-sweep example (3)
If start Mark-and-sweep from E2, then we can safely garbage collect E1.

Heap

'[(E0 . [(x . 10)])
 (E1 . [E0 (x . 20)])
 (E2 . [E0 (x . 30)])
]

Reference use

E0

E2 E1

CS450 ☽ Garbage collection ☽ Lecture 26 ☽ Tiago Cogumbreiro 28 / 28

