CS450

Structure of Higher Level Languages

Lecture 18: Lexical/dynamic scoping

Tiago Cogumbreiro

Today we will learn... ?/11

Lexical scoping

Dynamic scoping

Function closures

Compute which variables are captured by a function declaration
The Church encoding

lecture in CSE341 from the University of Washington: Video 1 Video 2 Video 3 Video 4

I Acknowledgment: Today's lecture is inspired by Professor Dan Grossman's wonderful

CS450) Lexical/dynamic scoping) Lecture18 Y Tiago Cogumbreiro

https://courses.cs.washington.edu/courses/cse341/18au/lec14slides.pdf
https://courses.cs.washington.edu/courses/cse341/18au/videos/unit3/uncaptioned/049-lexical-scope.mp4
https://courses.cs.washington.edu/courses/cse341/18au/videos/unit3/uncaptioned/050-lexical-scope-and-functions.mp4
https://courses.cs.washington.edu/courses/cse341/18au/videos/unit3/uncaptioned/051-why-lexical-scope.mp4
https://courses.cs.washington.edu/courses/cse341/18au/videos/unit3/uncaptioned/052-closures-and-recomputation.mp4

L exical Scope

Lexical Scope

e Binding: association between a variable
and a value.

e Scope of a binding: the text where
occurrences of this name refer to the
binding

e Lexical (or static) scope: the innermost

lexically-enclosing construct declaring
that variable

Did you know? In Computer Science,
static analysis corresponds to analyzing
the source code, without running the
program.

(define (f)
(define x 10)
(define y 20)
(+ x y))

(define x 1)
(define y (+ x 1))

(check-equal? (f) 30)

A,

UMASS
BOSTON

CS450) Lexical/dynamic scoping) Lecture18) Tiago Cogumbreiro

Dynamic Scope

Lexical scope vs dynamic scope ?/11

e Lexical scoping is the default in all popular programming languages

» With lexical scoping, we can analyze the source code to identify the scope of every
variable

o With lexical scoping, the programmer can reason about each function independently
What is a dynamic scope?

e Variable scope depends on the calling
context (define (f) x)

» Renders all variables global (define (g x) (f))

appeared in McCarthy’s Lisp 1.0 as a bug and became (check-equal? (g 18) 10)
afeaturein all later implementations, such as)
MacLisp, Gnu Emacs Lisp. (deflne X 2@)
(check-equal? (f) 20)
Moreau, L. Higher-Order and Symbolic Computation
(1998)11:233.D0I:10.1023/A:1010087314987

CS450) Lexical/dynamic scoping) Lecture18 Y Tiago Cogumbreiro

https://doi.org/10.1023/A:1010087314987

Example ?/11

| What is the result of evaluating (g)?

(define x 1)

(define (fy) (+ vy x))

(define (g)
(define x 2)
(define y 3)
(f (+ xy)))

(check-equal? (g) ??7)

CS450) Lexical/dynamic scoping) Lecture18) Tiago Cogumbreiro

Example ?/11

| What is the result of evaluating (g)?

(define x 1)
(define (f f:y) (+ f:y x))

(define (g)
(define g:x 2)
(define g:y 3)
(f (+ g:x g:y)))

(check-equal? (g) 6)

CS450) Lexical/dynamic scoping) Lecture18 Y Tiago Cogumbreiro

Why lexical scoping? ?/11

e Lexical scoping is important for using functions-as-values
e To implement our Mini-Racket we will need to implement lexical scoping

CS450) Lexical/dynamic scoping) Lecture18 Y Tiago Cogumbreiro

Example ?/11

| What is the result of evaluating (g)?

(define (g) x)
(define x 10)

(check-equal? (g) ??7)

CS450) Lexical/dynamic scoping) Lecture18) Tiago Cogumbreiro

Example ?/11

| What is the result of evaluating (g)?

(define (g) x)

(define x 10)
(check-equal? (g) 10)

We can define a function g that refers to an undefined variable x; variable x must be
defined before calling g.

In Racket, variable definition produces a side-effect, as the definition of x impacted a
previously defined function g. In Module 5, we implement the semantics of define.

CS450) Lexical/dynamic scoping) Lecture18) Tiago Cogumbreiro

Accessing variables outside a function ?/11

The body of a function can refer to variables defined outside of that function.
| It can access variables is defined outside of the function, but where exactly?

The function's body can access any variable that is accessible/visible when the function is
defined, which is known as the lexical scope.

In the following example, the function returns 3 and not 10, even though variable x is now 10.

(define (getter x) (lambda () x))
(define get3 (getter 3))

(define x 10)

(check-equal? 3 (get3))

CS450) Lexical/dynamic scoping) Lecture18) Tiago Cogumbreiro

Function closures

13/24

Recall that functions capture variables 7

BOSTON

Function closure

e A function closure is the return value of function declaration (i.e., the function value)

o Definition: A function closure is a pair that stores a function declaration and its lexical
environment (i.e., the state of each variable captured by the function declaration)

e The technique of creating a function closure is used by compilers/interpreters to
represent function values

Recall that function declarion # function definition:

o Function declaration: (lambda (variable*) term+)
 Function definition: (define (variable+) term+)

CS450) Lexical/dynamic scoping) Lecture18) Tiago Cogumbreiro

Now we know what a function closure Is ?/11

1. How to compute the variables in a closure
2. When to set the values of each variable in a closure

CS450) Lexical/dynamic scoping) Lecture18) Tiago Cogumbreiro

Function closures: captured variables ?/11

| Itis crucial for us to know how variables are captured in Racket.

Given an expression the set of free variables can be defined inductively:
« When the expression is a variable x, the set of free variablesis { x }.

e When the expressionis a (lambda (x) e), the set of free variables is that of expression e
minus variable x.

« When the expression is a function application (e1 e2), the set of free variables is the
union of the set of free variables of e1 and the set of free variables of e?2.

Captured variables: Given an expression (lambda (x) e) a function closure captures the
set of free variables of expression (lambda (x) e).

CS450) Lexical/dynamic scoping) Lecture18) Tiago Cogumbreiro

Captured variables examples ?/11

Let us compute fv (1ambda (x) (+ x y)):

1. The free-variables of a \ are the free variables of the body of the function minus

parameter x.

fv (lambda (x) (+ x y)) =fv (+ x y) \{x}

2. We are now in a case of function application, which is the union of the free variables of
each of its sub expressions.

fv (+ x y) \{z} = (fv(+) U fv(z) Ufv(y)) \ {z}

4. Finally, we reach the case where each argument of free-vars is a variables.

(fv(+) Utv(z) Utv(y) \ {z} = ({+} U{z} U{y}) \ {2} = {+ 2,9} \ {z} = {+ 4}

CS450) Lexical/dynamic scoping) Lecture18) Tiago Cogumbreiro

What creates an environment? ?/11

Definition: At any execution point there is an environment, which maps each variable to a
value.
What creates environments:

e Each branch inside a cond creates an environment

e The body of a function creates an environment

What updates an environment:
e The arguments of a lambda are added to the function's body environment

o A (define x e) updates the current environment by adding/updating variable x and
setting it to the value that results from evaluating e

CS450) Lexical/dynamic scoping) Lecture18) Tiago Cogumbreiro

Example 1: capture an argument ?/11

The lambda is capturing x as the parameter of getter at creation time, so when we call
(getter3) we get (1ambda () 3).

(define (getter x)
(1ambda () x))

(define get3 (getter 3))
(check-equal? 3 (get3))

CS450) Lexical/dynamic scoping) Lecture18) Tiago Cogumbreiro

Example 3: cond starts a new scope ?/11

Function getter captured x at the outermost scope (the x captured at function declaration
time). Inside the branches of cond we have a new scope, which means that getter is
unaffected by the redefinition of x.

(define (getter) x)
(define x 10)

(cond [#t (define x 20) (check-equal? 10 (getter))])
(check-equal? 10 (getter))

CS450) Lexical/dynamic scoping) Lecture18) Tiago Cogumbreiro

Example 3: define shadows parameters ?/11

Function getter returns variable x from the environment of function f. When calling f 20
the last value of variable x in the scope of fis 10, due to (define x 1@), which overwrites
the function's parameter x=20.

(define (f x)
(define (getter) x)
(define x 10)
getter)

(define g (f 20))
(check-equal? 10 (g))

CS450) Lexical/dynamic scoping) Lecture18) Tiago Cogumbreiro

Church's encoding

Chuch’'s encoding 7

BOSTON

e Alonzo Church created the A-calculus

e Church's Encoding is a treasure trove of
A-calculus expressions: it shows how
natural numbers can be encoded

e Let us go through Church's encoding of
booleans

e Examples taken from Colin Kemp's PhD
thesis (page 17)

CS450) Lexical/dynamic scoping) Lecture18) Tiago Cogumbreiro

https://en.wikipedia.org/wiki/Alonzo_Church
https://en.wikipedia.org/wiki/Church_encoding
https://ia600202.us.archive.org/11/items/TheoreticalFoundationsForPracticaltotallyFunctionalProgramming/33429551_PHD_totalthesis.pdf

Encoding Booleans with A-terms ?/11

| Why? Because you will be needing test-cases.

(require rackunit)
(define (run-bool b) (((eval b) #it) #f))

(define TRUE '(lambda (a) (lambda (b) a)))
(define FALSE '(lambda (a) (lambda (b) b)))
(define (OR a b) (list (list a TRUE) b))

(define (AND a b) (list (list a b) FALSE))
(define (NOT a) (list (list a FALSE) TRUE))
(define (EQ a b) (list (list a b) (NOT b)))

(check-equal?
(run-bool (EQ TRUE (OR (AND FALSE TRUE) TRUE)))
(equal? #t (or (and #f #it) #it)))

CS450) Lexical/dynamic scoping) Lecture18) Tiago Cogumbreiro

