
CS450
Structure of Higher Level Languages

Lecture 14: Thunks and promises

Tiago Cogumbreiro

1 / 21

Today we will learn…
1. Learn about delayed evaluation
2. Promises and their implementation
3. Streams of data

Acknowledgment: Today's lecture is inspired by Professor Dan Grossman's wonderful
lecture in CSE341 from the University of Washington: (Video 1) (Video 2) (Video 3) (Video
4) (Video 5)

CS450 ☽ Thunks and promises ☽ Lecture 14 ☽ Tiago Cogumbreiro 2 / 21

https://courses.cs.washington.edu/courses/cse341/18au/lec14slides.pdf
https://courses.cs.washington.edu/courses/cse341/18au/videos/unit5/uncaptioned/095-thunks.mp4
https://courses.cs.washington.edu/courses/cse341/18au/videos/unit5/uncaptioned/096-avoid-computations.mp4
https://courses.cs.washington.edu/courses/cse341/18au/videos/unit5/uncaptioned/097-delay-and-force.mp4
https://courses.cs.washington.edu/courses/cse341/18au/videos/unit5/uncaptioned/098-using-streams.mp4
https://courses.cs.washington.edu/courses/cse341/18au/videos/unit5/uncaptioned/099-defining-streams.mp4

Module 2: recap
Learned advanced Functional Programming principles
Developed a library of function combinators
The effect of tail-call optimization and how to use them
Refactored code to reduce code redundancy
Refactored code to improve runtime performance

CS450 ☽ Thunks and promises ☽ Lecture 14 ☽ Tiago Cogumbreiro 3 / 21

Module 3:

Lazy evaluation

4 / 21

Module 3
Lazy evaluation

Using functions to delay computation
Lazy evaluation as a form of controlling execution
Lazy evaluations as data-structures
Functional patterns applied to delayed

CS450 ☽ Thunks and promises ☽ Lecture 14 ☽ Tiago Cogumbreiro 5 / 21

Delayed evaluation

6 / 21

Recall the evaluation order
Function application

The evaluation of function application can be called eager
Evaluating a function application, �rst evaluates each argument before evaluating the
body of the function.

Condition

The evaluation of cond can be called lazy, in the sense that a branch of cond is only evaluated
when its guard yields true (and only the one branch is evaluated).

CS450 ☽ Thunks and promises ☽ Lecture 14 ☽ Tiago Cogumbreiro 7 / 21

How to encode an if-then-else?
(define (factorial n)
 (cond [(= n 0) 1]
 [else (* n (factorial (- n 1)))]))

Example

(define (if b then-branch else-branch)
 (cond [b then-branch] [else else-branch]))

(define (factorial n)
 (if (= n 0) 1 (* n (factorial (- n 1)))))

(factorial 10)

What is wrong with this implementation?

CS450 ☽ Thunks and promises ☽ Lecture 14 ☽ Tiago Cogumbreiro 8 / 21

How to encode an if-then-else?
(define (factorial n)
 (cond [(= n 0) 1]
 [else (* n (factorial (- n 1)))]))

Example

(define (if b then-branch else-branch)
 (cond [b then-branch] [else else-branch]))

(define (factorial n)
 (if (= n 0) 1 (* n (factorial (- n 1)))))

(factorial 10)

What is wrong with this implementation? Why (factorial 10) does not terminate?

CS450 ☽ Thunks and promises ☽ Lecture 14 ☽ Tiago Cogumbreiro 8 / 21

Our implementation of if is too eager
Because our if is a function, applying evaluates the then-branch and the else-branch before
choosing what to return.
Which, means our factorial no longer has a base case, and, therefore, it does not terminate.

= (factorial 0)
= (if (= 0 0) 1 (* 0 (factorial (- 0 1))))
= (if #t 1 (* 0 (factorial (- 0 1))))
= (if #t 1 (* 0 (factorial -1)))
= (if #t 1 (* 0 (if (= 0 -1) (= 0 -1) (* -1 (factorial (- -1 1))))))
= ...

Any idea how we can work around this limitation?

CS450 ☽ Thunks and promises ☽ Lecture 14 ☽ Tiago Cogumbreiro 9 / 21

Using lambdas to delay computation
We can use a zero-argument lambda to hold each branch, as a lambda delays computation!

(define (if b then-branch else-branch)
 (cond [b (then-branch)] [else (else-branch)]))

(define (factorial n)
 (if (= n 0) (lambda () 1) (lambda () (* n (factorial (- n 1))))))

(factorial 10)

CS450 ☽ Thunks and promises ☽ Lecture 14 ☽ Tiago Cogumbreiro 10 / 21

Thunks: zero-argument functions
The pattern of using zero-argument functions to delay evaluation is called a thunk. You can
use thunk as a verb which is a synonym of delaying evaluation.

(lambda () e) delays expression e
(e) evaluates thunk e and calls that thunk

CS450 ☽ Thunks and promises ☽ Lecture 14 ☽ Tiago Cogumbreiro 11 / 21

Using thunk
Racket offers (thunk e) as a short-hand notation for (lambda () e); both notations are
equivalent.

(define (if b then-branch else-branch)
 (cond [b (then-branch)] [else (else-branch)]))

(define (factorial n)
 (if (= n 0) (thunk 1) (thunk (* n (factorial (- n 1))))))

(factorial 10)

CS450 ☽ Thunks and promises ☽ Lecture 14 ☽ Tiago Cogumbreiro 12 / 21

Functional patterns: promises

13 / 21

Repeated delayed computation
In functional programming, there are cases where you have an intertwined pipeline of
functions where a thunk might be carried around. Since, we aim at side-effect free
programming models, it is wasteful to compute a thunk multiple times, when at most one
would do.

Example

(define (runner count thunk call-back)
 (cond [(�� count 0) (call-back (thunk) thunk)] ; invokes thunk once, and passes it along
 [else (call-back count thunk)])) ; does not invoke thunk once

It might not possible to know, at the function-level, if thunk was already called, as it
depends on the caller and, in this case, on call-back as well.

CS450 ☽ Thunks and promises ☽ Lecture 14 ☽ Tiago Cogumbreiro 14 / 21

Promises: memoize delayed computation
(delay e) delays the evaluation of an expression (yielding a thunk)
(force e) caches the result of evaluating e, so that multiple applications of that thunk
return the result.

Did you know?
Memoization: optimization technique that caches the result of an expensive function
and returns the cached result
Haskell does not share the same evaluation model as we have in Racket. Instead, all
expressions of the language are lazily evaluate.
The idea of memoized delayed evaluation provides an elegant way to parallelize code.
The concept is usually known as a future.
The idea of memoized delayed evaluation (promises) is also very important in
asynchronous code (networking, and GUI), eg in JavaScript, in Python

CS450 ☽ Thunks and promises ☽ Lecture 14 ☽ Tiago Cogumbreiro 15 / 21

Thunks

(define (thunk-repeat n th)
 (cond [(�� n 0) (void)]
 [else
 (th)
 (thunk-repeat (- n 1) th)]))

(thunk-repeat 3 (thunk (sleep 1) 3))

Promises

Example: delay/force

(define (promise-repeat n prom)
 (cond [(�� n 0) (void)]
 [else
 (force prom)
 (promise-repeat (- n 1) prom)]))

(promise-repeat 3 (delay (sleep 1) 3))

CS450 ☽ Thunks and promises ☽ Lecture 14 ☽ Tiago Cogumbreiro 16 / 21

Promises versus thunks
Accessor

Promises: must call function force
Thunks: call the object itself

Evaluation count

(force p) evaluates the promise at most once; subsequent calls are cached
(thnk) calling a thunk evaluates its contents each and every time

CS450 ☽ Thunks and promises ☽ Lecture 14 ☽ Tiago Cogumbreiro 17 / 21

Implementing promises: state
Promises are usually implemented with mutable references. Can we get away with
implementing promises without using mutation?

A promise has two states:

1. when the thunk has not been run yet
2. when the thunk has been run at least once

A promise must hold:
the thunk we want to cache
the empty/full status

We need to separate the operations that mutate the state, from the ones that query the
state.

CS450 ☽ Thunks and promises ☽ Lecture 14 ☽ Tiago Cogumbreiro 18 / 21

Implementing promises: operations
Function (force c) can be though of a few smaller operations:

1. checking if the promise is empty
2. if the promise is empty, update the promise state to full and store the result of the thunk
3. if the promise is full, does nothing to the promise state, and returns the cached result

Let us separate the operations that change the state from the one that return the value.
Function (promise-sync p) returns a new promise state. When the promise is empty, it
computes the thunk and stores it in a full promise. When the promise is full, it just
returns the promise given.
Function (promise-get p) can only be called when the promise is full and returns the
result of the promise.

CS450 ☽ Thunks and promises ☽ Lecture 14 ☽ Tiago Cogumbreiro 19 / 21

Immutable promise implementation
(struct promise (empty? result))
(define (make-promise thunk) (promise #t thunk))
(define (promise-run w)
 (define th (promise-result w))
 (th))
(define (promise-get p)
 (cond [(promise-empty? p) (error "promise: call (promise-sync p) first.")]
 [else (promise-result p)]))
(define (promise-sync p)
 (cond [(not (promise-empty? p)) p]
 [else (promise #t (promise-run p))]))

CS450 ☽ Thunks and promises ☽ Lecture 14 ☽ Tiago Cogumbreiro 20 / 21

Example of immutable promises
Immutable Promises

(define (promise-repeat n prom)
 (cond [(�� n 0) (void)]
 [else
 (promise-repeat (- n 1) (promise-sync prom))]))
(promise-repeat 3 (make-promise (thunk (sleep 1) 3)))

Standard promises

(define (promise-repeat n prom)
 (cond [(�� n 0) (void)]
 [else
 (force prom)
 (promise-repeat (- n 1) prom)]))

(promise-repeat 3 (delay (sleep 1) 3))

CS450 ☽ Thunks and promises ☽ Lecture 14 ☽ Tiago Cogumbreiro 21 / 21

