CS450

Structure of Higher Level Languages

| ecture 12: Reduction, thunks

Tiago Cogumbreiro

CS450) Reduction,thunks) Lecturel12) Tiago Cogumbreiro

Today we will learn... ?/11

1. Optimizing code to be tail-recursive
2. List reduction (append, foldl)
3. Learn about delayed evaluation (thunks)

Acknowledgment: Today's lecture is partially inspired by Professor Dan Grossman's
wonderful lecture in CSE341 from the University of Washington: (Video 1) (Video 2)

CS450) Reduction,thunks) Lecturel12) Tiago Cogumbreiro

https://courses.cs.washington.edu/courses/cse341/18au/lec14slides.pdf
https://courses.cs.washington.edu/courses/cse341/18au/videos/unit5/uncaptioned/095-thunks.mp4
https://courses.cs.washington.edu/courses/cse341/18au/videos/unit5/uncaptioned/096-avoid-computations.mp4

Making map tail-recursive ?/11

(define (map f 1)
(cond [(empty? 1) 1]
[else (cons (f (first 1)) (map f (rest 1)))]))

CS450) Reduction,thunks) Lecturel12) Tiago Cogumbreiro

Tall-recursive map run ?/11

(map f (list 12 3)) =

(define (accum@ x) x) (map-iter accum@ (list 1 2 3)) =

(define (accuml x) (accum@ (cons (f 1) x))) (map-iter accum1 (list 2 3)) =
(define (accum2 x) (accum1 (cons (f 2) x))) (map-iter accum2 (list 3)) =
(define (accum3 x) (accum2 (cons (f 3) x))) (map-iter accum3 (list)) =

(accum3 (list)) =

(accum2 (list (f 3))) =

(accum1 (list (f 2) (f 3))) =
(accum@ (list (f 1) (f 2) (f 3))) =
(1ist (f 1) (f 2) (f 3)))

CS450) Reduction,thunks) Lecturel12) Tiago Cogumbreiro

Tall-recursive optimization pattern ?/11

To summarize, when a value has base case and an inductive case, we identified the
following pattern for a tail-recursive optimization:

Unoptimized Optimized
(define (rec v) (define (rec v)
(cond (define (rec-aux accum v)
[(base-case? v) (base v)] (cond
[else (step v (rec (dec v)))])) [(base-case? v) (accum (base v))]
[else
(rec-aux

(1ambda (x) (accum (step v x)))

(dec v)))1))
(rec-aux (lambda (x) x) v)

CS450) Reduction,thunks) Lecturel12) Tiago Cogumbreiro

Tail-recursive map, using the generalized tail-recursion optimization pattern g/gs
BOSTON

(define (map f 1)
(define (map-iter accum 1)
(cond [(empty? 1) (accum 1)]
[else (map-iter (lambda (x) (accum (cons (f (first 1)) x))) (rest 1))]))
(map-iter (lambda (x) x) 1))

CS450) Reduction,thunks) Lecturel12) Tiago Cogumbreiro

Scanning

Remove zeros from a list ?/11

Spec
(require rackunit)

(check-equal? (list 1 3 4) (remove-0 (list 8 1 3 0 4)))
(check-equal? (list 1 2 3) (remove-0 (list 1 2 3)))

CS450) Reduction,thunks) Lecturel12) Tiago Cogumbreiro

Remove zeros from a list ?/11

Spec

(require rackunit)
(check-equal? (list 1 3 4) (remove-0 (list 8 1 3 0 4)))
(check-equal? (list 1 2 3) (remove-0 (list 1 2 3)))

Solution

(define (remove-0 1)
(cond
[(empty? 1) 1]
[(not (equal? (first 1) @)) (cons (first 1) (remove-8 (rest 1)))]
[else (remove-@ (rest 1))]))

CS450) Reduction,thunks) Lecturel12) Tiago Cogumbreiro

Can we generalize this functional pattern? ?/11

Original Generalized
(define (remove-8 1) (define (filter to-keep? 1)
(cond (cond
[(empty? 1) 1] [(empty? 1) 1]
[(not (equal? (first 1) @)) [(to-keep? (first 1))
(cons (first 1) (remove-8 (rest 1)))] (cons (first 1)
[else (remove-8 (rest 1))])) (filter1 to-keep? (rest 1)))]

[else (filter to-keep? (rest 1))]))

(define (remove-0 1)
(filter
(lambda (x) (not (equal? x 8))) 1))

| Is this function tail-recursive?

CS450) Reduction,thunks) Lecturel12) Tiago Cogumbreiro

Can we generalize this functional pattern? ?/11

Original Generalized
(define (remove-0 1) (define (filter to-keep? 1)
(cond (cond
[(empty? 1) 1] [(empty? 1) 1]
[(not (equal? (first 1) @)) [(to-keep? (first 1))
(cons (first 1) (remove-8 (rest 1)))] (cons (first 1)
[else (remove-8 (rest 1))])) (filter1 to-keep? (rest 1)))]

[else (filter to-keep? (rest 1))]))

(define (remove-0 1)
(filter
(lambda (x) (not (equal? x 8))) 1))

I Is this function tail-recursive? No. Function cons is a tail-call; filter is not.

CS450) Reduction,thunks) Lecturel12) Tiago Cogumbreiro

Tall-recursive filter ?/11

Revisiting the tail call optimization

Function filter has very similar shape than function map, so we can apply the same
optimization pattern.

(define (filter to-keep? 1)
(define (filter-aux accum 1)
(cond
[(empty? 1) (accum 1)]
[else
(define hd (first 1))
(define t1 (rest 1))
(cond
[(to-keep? hd) (filter-aux (lambda (x) (accum (cons hd x))) t1)]
[else (filter-aux accum t1)]]))
(filter-aux (lambda (x) x) 1))

CS450) Reduction,thunks) Lecturel12) Tiago Cogumbreiro

