CS450

Structure of Higher Level Languages

Lecture 11: Currying, exists, update many

Tiago Cogumbreiro

Today we will learn... ?/11

e Currying (recap)

o Test if element exists (member, exists)
» Pointwise update (map)

e Tail-call optimized code

CS450) Currying, exists,update many) Lecturell) Tiago Cogumbreiro

Currying

Applying a function with fewer arguments than required

vields a function that expects the remaining arguments

3/24

Uncurried functions ?/11

| All arguments must be provided at call-time, otherwise error.
Python example

def add(1, r):
return 1 + vy

add(10)

CS450 D Currying, exists,update many) Lecturell) Tiago Cogumbreiro

Curried functions ?/11

If we provide one argument to a 2-parameters function, the result is a 1-parameter
function that expects the second argument.

Haskell example

add x y = x +y
add1@ = add 10

add10 30

CS450) Currying, exists,update many) Lecturell) Tiago Cogumbreiro

Currying in Racket 7

UMASS
BOSTON

Function curry converts an uncurried function into a curried function.
#lang racket

(define curried-add (curry +))

(define add1@ (curried-add 10))
(require rackunit)

(check-equal? (+ 10 30) (add1@ 30))

HW?Z

e In HW2 you will need to implement the reverse, function uncurry.
e You are now ready to solve exercises 1, 4, and 5.

CS450 D Currying, exists,update many) Lecturell) Tiago Cogumbreiro

Currying functions ?/11

Currying is the general technique of "freezing” functions with multiple parameters. It
provides a way of delaying (and caching) the passage of multiple arguments by means of

new functions.

A curried function curry, ,, , (x) is a unary function annotated with an uncurried function
f arguments a and a number of expected arguments n that can be recursively defined as:

curryf,nH,[al,_] (33) = curr}’f,n,[al,. O
curryf,o’[alr . .,an] (a:) — f(a/h e+ 5Ap, $)

CS450 D Currying, exists,update many) Lecturell) Tiago Cogumbreiro

Exercise b ?/11

What is the output of this program?

Program

(define curried-add
(1ambda (arg1)
(lambda (arg2)
(+ argl arg2))))

(define a (curried-add 10))
(define b (curried-add 20))
a

b

(a 30)

(b 40)

CS450 D Currying, exists,update many) Lecturell) Tiago Cogumbreiro

Exercise b ?/11

What is the output of this program?

Program Output
(define curried-add (1ambda (arg2) (+ 10 arg2))
(1ambda (arg1) (lambda (arg2) (+ 20 arg2))
(lambda (arg2) 40
(+ argl arg2)))) 60

(define a (curried-add 10))
(define b (curried-add 20))
a

b

(a 30)

(b 40)

CS450 D Currying, exists,update many) Lecturell) Tiago Cogumbreiro

Functional patterns:

Does It ex|st?

Element in the list? ?/11

| Let usimplement a function member that tests whether or not a list contains a value.

Specification

(require rackunit)

(check-true (member 1 (list 3 6 1)))
(check-true (member #t (list 3 #it (1list))))
(check-false (member 1 (list 3 #t (list 1))))
(check-false (member #f (1list)))

CS450 D Currying, exists,update many) Lecturell) Tiago Cogumbreiro

A,

Element in the list? i
| Let usimplement a function member that tests whether or not a list contains a value.
Specification Solution
(define (member x 1)

(require rackunit) (cond

(check-true (member 1 (list 3 6 1))) [(empty? 1) ftf]

(check-true (member #t (list 3 #t (1list)))) [(equal? (first 1) x) #t]

(check-false (member 1 (list 3 #it (list 1)))) [else (member x (rest 1))]))

(check-false (member #f (list)))

| Is the solution tail-recursive?

CS450 D Currying, exists,update many) Lecturell) Tiago Cogumbreiro

A,

Element in the list? i
| Let usimplement a function member that tests whether or not a list contains a value.
Specification Solution
(define (member x 1)

(require rackunit) (cond

(check-true (member 1 (list 3 6 1))) [(empty? 1) ftf]

(check-true (member #t (list 3 #t (1list)))) [(equal? (first 1) x) #t]

(check-false (member 1 (list 3 #it (list 1)))) [else (member x (rest 1))]))

(check-false (member #f (list)))

| Is the solution tail-recursive? Yes!

CS450 D Currying, exists,update many) Lecturell) Tiago Cogumbreiro

Element in the list? ?/11

Overview of our solution

| Recursive code mirrors the structure your datal

Think of how many constructors your data has, those will be your recursive cases.
o Case empty: the empty list constructor, same as (1ist)
 Case cons: add one element to the list with the (cons x 1) constructor
e Recursive call must handle "smaller” data
o with lists: (rest 1)
o with numbers: (+ n 1) if you approach an upper bound
o with numbers: (- n 1) if you approach a lower bound

CS450 D Currying, exists,update many) Lecturell) Tiago Cogumbreiro

A general recursion pattern for handling lists ?/11

1. Case empty (handle-base) (define (rec v)

(cond
2. Case cons (handle-step) [(base-case? v) (handle-base v)]
3. Recursive call handles "smaller” [else (handle-step v (rec (decrement v)))]))

CS450 D Currying, exists,update many) Lecturell) Tiago Cogumbreiro

A general recursion pattern for handling lists ?/11

1. Case empty (handle-base) (define (rec v)

(cond
2. Case cons (handle-step) [(base-case? v) (handle-base v)]
3. Recursive call handles "smaller” [else (handle-step v (rec (decrement v)))]))

Example for member

(define (member x 1)
(cond
[(empty? 1) #if]
[else
(cond [(equal? (first 1) x) #it]
[else (member x (rest 1))D1))

| In this version, we make the base and handle-steps explicit. Previous solution coalesces nested conds into one.

CS450 D Currying, exists,update many) Lecturell) Tiago Cogumbreiro

Common mistake 1 ?/11

Forgetting the base case

e Symptom: first contract violation

Example Base case missing
(define (member x 1) (define (member x 1)
(cond (cond
[(empty? 1) #if] [(equal? (first 1) x) #t]
[(equal? (first 1) x) #t] [else (member x (rest 1))]))

[else (member x (rest 1))]))

CS450 D Currying, exists,update many) Lecturell) Tiago Cogumbreiro

Common mistake 2 ?/11

Forgetting to make the list smaller

o Symptom: program hangs (runs forever) for some inputs

Correct Incorrect
(define (member x 1) (define (member x 1)
(cond (cond
[(empty? 1) #if] [(empty? 1) #f]
[(equal? (first 1) x) #t] [(equal? (first 1) x) #t]
[else (member x (rest 1))])) [else (member x 1)]))

CS450 D Currying, exists,update many) Lecturell) Tiago Cogumbreiro

Generalizing member

Exists prefix in list? ?/11

Spec

(require rackunit)

(check-true (string-prefix? "Racket" "R"))

(check-true (match-prefix? "R" (1list "foo" "Racket")))
(check-false (match-prefix? "R" (list "foo" "bar")))

CS450 D Currying, exists,update many) Lecturell) Tiago Cogumbreiro

Exists prefix in list? ?/11

Spec

(require rackunit)

(check-true (string-prefix? "Racket" "R"))

(check-true (match-prefix? "R" (1list "foo" "Racket")))
(check-false (match-prefix? "R" (list "foo" "bar")))

Solution

(define (match-prefix? prefix 1)
(cond
[(empty? 1) #if]
[(string-prefix? (first 1) prefix) fit]
[else (match-prefix? prefix (rest 1))]))

CS450 D Currying, exists,update many) Lecturell) Tiago Cogumbreiro

Can we generalize the search algorithm? ?/11

(define (member x 1) (define (match-prefix? x 1)
(cond (cond
[(empty? 1) #f] [(empty? 1) #if]
[(equal? (first 1) x) #t] [(string-prefix? (first 1) x) ftt]
[else (member x (rest 1))])) [else (match-prefix? x (rest 1))]))

CS450 D Currying, exists,update many) Lecturell) Tiago Cogumbreiro

Can we generalize the search algorithm? ?/11

(define (member x 1) (define (match-prefix? x 1)
(cond (cond
[(empty? 1) #f] [(empty? 1) #if]
[(equal? (first 1) x) #t] [(string-prefix? (first 1) x) ftt]
[else (member x (rest 1))])) [else (match-prefix? x (rest 1))]))
Solution

(define (exists predicate 1)

(cond (define (member x 1)
[(empty? 1) #f] (exists
[(predicate (first 1)) fit] (1ambda (y) (equal? x y)) 1))

[else (exists predicate (rest 1))]))
(define (match-prefix? x 1)
(exists
(lambda (y) (string-prefix? y x))) 1)

CS450 D Currying, exists,update many) Lecturell) Tiago Cogumbreiro

Functional pattern:

Updating elements

Convert a list from floats to integers ?/11

Spec
(require rackunit)
(check-equal? 3 (exact-floor 3.14))
(check-equal?

(1ist 1 2 3)
(list-exact-floor (list 1.1 2.6 3.0)))

CS450 D Currying, exists,update many) Lecturell) Tiago Cogumbreiro

Convert a list from floats to integers ?/11

Spec Solution
(require rackunit) (define (list-exact-floor 1)
(cond [(empty? 1) 1]
(check-equal? 3 (exact-floor 3.14)) [else
(check-equal? (cons
(1ist 1 2 3) (exact-floor (first 1))
(1ist-exact-floor (list 1.1 2.6 3.0))) (1ist-exact-floor (rest 1)))]))

I Can we generalize this for any operation on lists?

(check-equal?
(1ist-exact-floor (list 1.1 2.6 3.8)))
(1ist (exact-floor 1.1) (exact-floor 2.6) (exact-floor 3.8)))

CS450 D Currying, exists,update many) Lecturell) Tiago Cogumbreiro

Function map ?/11

Generic solution Using map
(define (map f 1) (define (list-exact-floor 1)
(cond [(empty? 1) 1] (map exact-floor 1))

[else (cons (f (first 1)) (map f (rest 1)))]))

| Is map function tail-recursive?

CS450 D Currying, exists,update many) Lecturell) Tiago Cogumbreiro

Function map %

BOSTON

Generic solution Using map

(define (map f 1)
(cond [(empty? 1) 1]
[else (cons (f (first 1)) (map f (rest 1)))]))

(define (1list-exact-floor 1)
(map exact-floor 1))

| Is map function tail-recursive? No.

map passes the return value of the recursive call to cons. The order of applying cons is

important, so we can't just apply it to an accumulator parameter (as that would reverse the
order of application).

Idea: delay adding to the right with a 1ambda. First, run all recursive calls at tail-call, while

creating a function that processes the result and appends the element to the left (cons).
Second, run the accumulator function.

CS450 D Currying, exists,update many) Lecturell) Tiago Cogumbreiro

The tall-recursive

optimization pattern

Tail-recursive map, using the generalized tail-recursion optimization pattern g/gs
BOSTON

(define (map f 1)
(define (map-iter accum 1)
(cond [(empty? 1) (accum 1)]
[else (map-iter (lambda (x) (accum (cons (f (first 1)) x))) (rest 1))]))
(map-iter (lambda (x) x) 1))

The accumulator delays the application of (cons (f (first 1)) ?).

1. The initial accumulator is (1ambda (x) x), which simply returns whatever list is passed to
it.
2. The base case triggers the computation of the accumulator, by passing it an empty list.

3. In the inductive case, we just augment the accumulator to take a list x, and return (cons
(f (first 1)) x) to the next accumulator.

The accumulator works like a pipeline: each inductive step adds a new stage to the
pipeline, and the base case runs the pipeline: (stage3 (stage2 (stagel ((lambda (x) x)

nil))))

CS450 D Currying, exists,update many) Lecturell) Tiago Cogumbreiro

Tall-recursive map run ?/11

(map f (list 12 3)) =

(define (accum@ x) x) (map-iter accum@ (list 1 2 3)) =

(define (accuml x) (accum@ (cons (f 1) x))) (map-iter accum1 (list 2 3)) =
(define (accum2 x) (accum1 (cons (f 2) x))) (map-iter accum2 (list 3)) =
(define (accum3 x) (accum2 (cons (f 3) x))) (map-iter accum3 (list)) =

(accum3 (list)) =

(accum2 (list (f 3))) =

(accum1 (list (f 2) (f 3))) =
(accum@ (list (f 1) (f 2) (f 3))) =
(1ist (f 1) (f 2) (f 3)))

CS450 D Currying, exists,update many) Lecturell) Tiago Cogumbreiro

Tall-recursive optimization pattern ?/11

To summarize, when a value has base case and an inductive case, we identified the
following pattern for a tail-recursive optimization:

Unoptimized Optimized
(define (rec v) (define (rec v)
(cond (define (rec-aux accum v)
[(base-case? v) (base v)] (cond
[else (step v (rec (dec v)))])) [(base-case? v) (accum (base v))]
[else
(rec-aux

(1ambda (x) (accum (step v x)))

(dec v)))1))
(rec-aux (lambda (x) x) v)

CS450 D Currying, exists,update many) Lecturell) Tiago Cogumbreiro

