
CS450
Structure of Higher Level Languages

Lecture 6: Nested de�nitions; caching

Tiago Cogumbreiro

CS450 ☽ Nested de�nitions; caching ☽ Lecture 6 ☽ Tiago Cogumbreiro 1 / 25

Today we will learn about…
1. tips for solving HW1
2. using nested de�nitions
3. measuring running time

Acknowledgment: Today's lecture is inspired by Professor Dan Grossman's wonderful
lecture in CSE341 from the University of Washington. (Video available)

CS450 ☽ Nested de�nitions; caching ☽ Lecture 6 ☽ Tiago Cogumbreiro 2 / 25

https://courses.cs.washington.edu/courses/cse341/18au/lec3slides.pdf
https://courses.cs.washington.edu/courses/cse341/18au/videos/unit1/uncaptioned/014-let-efficiency.mp4

Tips for solving HW1

3 / 25

HW1: Question 4
1. Do all parts except lambda?, define?, and define-func?.
2. Write lambda?
3. Write define-func?
4. Write define?

More tips

Function application is simpler than it seems
All acceptance-tests from define-func? should pass in define?

CS450 ☽ Nested de�nitions; caching ☽ Lecture 6 ☽ Tiago Cogumbreiro 4 / 25

Racket spec
HW1: Question 4

program = #lang racket term*

term = definition | expression

definition = basic-def | function-def
basic-def = (define identifier expression)
function-def = (define (variable+) term+)

expression = value | variable | function-call | function-decl |
value = number |
function-call = (expression+)
function-dec = (lambda (variable*) term+)

⋯
⋯

CS450 ☽ Nested de�nitions; caching ☽ Lecture 6 ☽ Tiago Cogumbreiro 5 / 25

Using nested de�nitions

6 / 25

Build a list from 1 up to n
Our goal is to build a list from 1 up to some number. Here is a template of our function and
a test case for us to play with. For the sake of simplicity, we will not handle non-positive
numbers.

#lang racket
(define (countup-from1 x) #f)

(require rackunit)
(check-equal? (list 1) (countup-from1 1))
(check-equal? (list 1 2) (countup-from1 2))
(check-equal? (list 1 2 3 4 5) (countup-from1 5))

Hint: write a helper function count that builds counts from n up to m.

CS450 ☽ Nested de�nitions; caching ☽ Lecture 6 ☽ Tiago Cogumbreiro 7 / 25

Exercise 1: attempt #1
We write a helper function count that builds counts from n up to m.

#lang racket
(define (countup-from1 x)
 (count 1 x))

(define (count from to)
 (cond
 [(= from to) (list to)]
 [else (cons from (count (+ 1 from) to))]))

CS450 ☽ Nested de�nitions; caching ☽ Lecture 6 ☽ Tiago Cogumbreiro 8 / 25

Exercise 1: attempt #1
We write a helper function count that builds counts from n up to m.

#lang racket
(define (countup-from1 x)
 (count 1 x))

(define (count from to)
 (cond
 [(= from to) (list to)]
 [else (cons from (count (+ 1 from) to))]))

Let us refactor the code and hide function count

CS450 ☽ Nested de�nitions; caching ☽ Lecture 6 ☽ Tiago Cogumbreiro 8 / 25

Exercise 1: attempt #2
We move function count to be internal to function countup-from1, as it is a helper function
and therefore it is good practice to make it private to countup-from1.

(define (countup-from1 x)
 ; Internally defined function, not visible from
 ; the outside
 (define (count from to)
 (cond [(equal? from to) (list to)]
 [else (cons from (count (+ 1 from) to))]))
 ; The same call as before
 (count 1 x))

CS450 ☽ Nested de�nitions; caching ☽ Lecture 6 ☽ Tiago Cogumbreiro 9 / 25

When to nest functions?
Nest functions:

If they are unnecessary outside
If they are under development
If you want to hide them: Every function in the public interface of your code is
something you'll have to maintain!

CS450 ☽ Nested de�nitions; caching ☽ Lecture 6 ☽ Tiago Cogumbreiro 10 / 25

Intermission:

Nested de�nitions

11 / 25

Nested de�nition: local variables
Nested de�nitions bind a variable within the body of a function and are only visible within
that function (these are local variables)

#lang racket
(define (f x)
 (define z 3)
 (+ x z))

(+ 1 z) ; Error: z is not visible outside function f

CS450 ☽ Nested de�nitions; caching ☽ Lecture 6 ☽ Tiago Cogumbreiro 12 / 25

Nested de�nitions shadow other variables
Nested de�nitions silently shadow any already de�ned variable

#lang racket
(define z 10)
(define (f x)
 (define x 3) ; Shadows parameter
 (define z 20) ; Shadows global
 (+ x z))

(f 1) ; Outputs 23

CS450 ☽ Nested de�nitions; caching ☽ Lecture 6 ☽ Tiago Cogumbreiro 13 / 25

No rede�ned local variables
It is an error to re-de�ne local variables

#lang racket
(define (f b)
 ; OK to shadow a parameter
 (define b (+ b 1))
 (define a 1)
 ; Not OK to re-define local variables
 ; Error: define-values: duplicate binding name
 (define a (+ a 1))
 (+ a b))

CS450 ☽ Nested de�nitions; caching ☽ Lecture 6 ☽ Tiago Cogumbreiro 14 / 25

Back to Exercise 1

15 / 25

Exercise 1: attempt #2
Notice that we have some redundancy in our code. In function count, parameter to
remains unchanged throughout execution.

(define (countup-from1 x)
 ; Internally defined function, not visible from
 ; the outside
 (define (count from to)
 (cond [(equal? from to) (list to)]
 [else (cons from (count (+ 1 from) to))]))
 ; The same call as before
 (count 1 x))

CS450 ☽ Nested de�nitions; caching ☽ Lecture 6 ☽ Tiago Cogumbreiro 16 / 25

Exercise 1: attempt #3
We removed parameter to from function count as it was constant throughout the
execution. Variable to is captured/copied when count is de�ned.

(define (countup-from1 to)
 ; Internally defined function, not visible from
 ; the outside
 (define (count from)
 (cond [(equal? from to) (list to)]
 [else (cons from (count (+ 1 from)))]))
 ; The same call as before
 (count 1))

CS450 ☽ Nested de�nitions; caching ☽ Lecture 6 ☽ Tiago Cogumbreiro 17 / 25

Example 1: summary
Use a nested de�nition to hide a function that is only used internally.
Nested de�nitions can refer to variables de�ned outside the scope of their de�nitions.
The last expression of a function's body is evaluated as the function's return value

CS450 ☽ Nested de�nitions; caching ☽ Lecture 6 ☽ Tiago Cogumbreiro 18 / 25

Measuring performance

19 / 25

Example 2
Maximum number from a list of integers

20 / 25

Example 2: attempt 1
Finding the maximum element of a list.

#lang racket
(define (max xs)
 (cond
 [(empty? xs) (error "max: expecting a non-empty list!")]
 [(empty? (rest xs)) (first xs)] ; The list only has one element (the max)
 [(> (first xs) (max (rest xs))) (first xs)] ; The max of the rest is smaller than 1st
 [else (max (rest xs))])) ; Otherwise, use the max of the rest

; A simple unit-test
(require rackunit)
(check-equal? 10 (max (list 1 2 10 4 0)))

We use function error to abort the program with an exception. We use functions first
and rest as synonyms for car and cdr, as it reads better.

CS450 ☽ Nested de�nitions; caching ☽ Lecture 6 ☽ Tiago Cogumbreiro 21 / 25

Example 2: attempt 1
Finding the maximum element of a list.

Let us benchmark max with sorted list (worst-case scenario):

20 elements: 18.43ms
21 elements: 36.63ms
22 elements: 75.78ms

Whenever we add an element we double the execution time. Why?

CS450 ☽ Nested de�nitions; caching ☽ Lecture 6 ☽ Tiago Cogumbreiro 22 / 25

Example 2: attempt 1
Whenever we hit the else branch (because we can't �nd the maximum), we re-compute
the max element.

(define (max xs)
 (cond
 [(empty? xs) (error "max: expecting a non-empty list!")]
 [(empty? (rest xs)) (first xs)] ; The list only has one element (the max)
 [(> (first xs) (max (rest xs))) (first xs)] ; The max of the rest is smaller than 1st
 [else (max (rest xs))])) ; Otherwise, use the max of the rest

CS450 ☽ Nested de�nitions; caching ☽ Lecture 6 ☽ Tiago Cogumbreiro 23 / 25

Example 2: attempt 2
We use a local variable to cache a duplicate computation.

(define (max xs)
 (cond
 [(empty? xs) (error "max: expecting a non-empty list!")]
 [(empty? (rest xs)) (first xs)]
 [else
 (define rest-max (max (rest xs))) ; Cache the max of the rest
 (cond
 [(> (first xs) rest-max) (first xs)]
 [else rest-max])]))

Attempt #1: 20 elements in 75.78ms
Attempt #2: 1,000,000 elements in 101.15ms

CS450 ☽ Nested de�nitions; caching ☽ Lecture 6 ☽ Tiago Cogumbreiro 24 / 25

Example 2 takeaways
Use nested de�nitions to cache intermediate results
Identify repeated computations and cache them in nested (local) de�nitions

CS450 ☽ Nested de�nitions; caching ☽ Lecture 6 ☽ Tiago Cogumbreiro 25 / 25

