
CS450
Structure of Higher Level Languages

Lecture 5: Lists; quoting

Tiago Cogumbreiro

CS450 ☽ Lists; quoting ☽ Lecture 5 ☽ Tiago Cogumbreiro 1 / 22

Today we will learn…
Being successful in CS 450
De�ning user data-structures
Serializing code with quote
Exercises with lists

CS450 ☽ Lists; quoting ☽ Lecture 5 ☽ Tiago Cogumbreiro 2 / 22

Being successful in CS 450

3 / 22

Forum questions policy
1. Private questions have the lowest priority
2. Instructor/TAs cannot comment on why a student's submission is not working
3. If a student lists which test-cases have been used, then the instructor/TAs can give more

inputs or test cases
4. Private questions regarding code must always be accompanied with the URL of latest

Gradescope submission
5. Students cannot share their solutions (partial/full) in public posts

https://piazza.com/class/k5ubs34raz3ao?cid=42

CS450 ☽ Lists; quoting ☽ Lecture 5 ☽ Tiago Cogumbreiro 4 / 22

https://piazza.com/class/k5ubs34raz3ao?cid=42

The �nal grade is given by the instructor
(not by the autograder)
We are grading the correctness of a solution

The autograder only approximates your grade

Grading partial solutions automatically is hard
Students may request for manual grading
Solution may be cheating
Solution may be using disallowed functions
Solution may be tricking the autograder system

CS450 ☽ Lists; quoting ☽ Lecture 5 ☽ Tiago Cogumbreiro 5 / 22

Tip #1: avoid �ghting the autograder
1. It's not personal: The autograder is not against you
2. It's not picky: The autograder is not against one speci�c solution
3. Correlation is not causation: Having a colleague with the same problem as you have,

does not imply that the autograder is wrong
4. Spend your time wisely: don't spend it thinking the autograder is wrong

Instead, discuss

1. Use the autograder for your bene�t: submit solution to test your hypothesis
2. Think before resubmitting: try explaining your solution to someone
3. Ask before resubmitting: write test cases and discuss those test cases with others

10% of your grade is participation, so discuss!

CS450 ☽ Lists; quoting ☽ Lecture 5 ☽ Tiago Cogumbreiro 6 / 22

Tip #2: participate
10% of your grade is participation

Software engineering and academic life is about communication: you are expected to
interact to solve your homework assignments.

1. Exercises are explained succinctly on purpose: ask questions to know more
2. Exercises have few test cases on purpose: share test-cases to know more

Make time in your schedule to interact

CS450 ☽ Lists; quoting ☽ Lecture 5 ☽ Tiago Cogumbreiro 7 / 22

Tip #3: time management
Work on your homework assignment incrementally

after each class you can solve a new exercise (with few exceptions)
when you get stuck in an exercise: (1) ask in our forum, and while you are waiting
(2) continue working on other exercises
don't leave everything to the weekend before submission

CS450 ☽ Lists; quoting ☽ Lecture 5 ☽ Tiago Cogumbreiro 8 / 22

Tip #4: learn to ask questions
The better your formulate a question,

The faster you will get an answer

Ask yourself

1. Which slides do you think the exercise relates to?
2. Which test-cases have you tried that counter your intuition?

Asking question

1. Describe the problem you are having (relate exercise and lessons)
2. Explain your attempts at �xing the problem (list used tests)

CS450 ☽ Lists; quoting ☽ Lecture 5 ☽ Tiago Cogumbreiro 9 / 22

User data-structures

10 / 22

(require rackunit)
(define p (point 1 2 3))
(check-true (point? p))
(check-equal? (list 1 2 3) p)
(check-equal? 1 (point-x p))
(check-equal? 2 (point-y p))
(check-equal? 3 (point-z p))
(check-true (origin? (list 0 0 0)))
(check-false (origin? p))

User data-structures
We can represent data-structures using pairs/lists.
For instance, let us build a 3-D point data type.

CS450 ☽ Lists; quoting ☽ Lecture 5 ☽ Tiago Cogumbreiro 11 / 22

(require rackunit)
(define p (point 1 2 3))
(check-true (point? p))
(check-equal? (list 1 2 3) p)
(check-equal? 1 (point-x p))
(check-equal? 2 (point-y p))
(check-equal? 3 (point-z p))
(check-true (origin? (list 0 0 0)))
(check-false (origin? p))

User data-structures
We can represent data-structures using pairs/lists.
For instance, let us build a 3-D point data type.

; Constructor
(define (point x y z) (list x y z))
(define (point? x)
 (and (list? x)
 (= (length x) 3)))
; Accessors
(define (point-x pt) (first pt))
(define (point-y pt) (second pt))
(define (point-z pt) (third pt))
; Example function
(define (origin? p) (equal? p (list 0 0 0))

CS450 ☽ Lists; quoting ☽ Lecture 5 ☽ Tiago Cogumbreiro 11 / 22

On data-structures
We only speci�ed immutable data structures
The effect of updating a data-structure is encoded by creating/copying a data-
structure
This pattern is known as a persistent data structure

CS450 ☽ Lists; quoting ☽ Lecture 5 ☽ Tiago Cogumbreiro 12 / 22

https://en.wikipedia.org/wiki/Persistent_data_structure

Serializing code

13 / 22

Quoting: a speci�cation
Function (quote e) serializes expression e. Note that expression e is not evaluated.

A variable x becomes a symbol 'x. You can consider a symbol to be a special kind of
string in Racket. You can test if an expression is a symbol with function symbol?
A function application becomes a list of the serialization of each .

Serializing a (define x e) yields a list with symbol 'define and the serialization of e.
Serializing yields a list with symbol 'define followed by a
nonempty list of symbols followed by serialized .

Serializing yields a list with symbol 'lambda, followed by a
possibly-empty list of symbols , and the serialized expression .

Serializing a becomes a list with symbol 'cond followed by a
serialized branch. Each branch is a list with two components: serialized expression and
serialized expression .

(e ⋯e)1 n ei

(define (x ⋯x) e)1 n

x′ i e

(lambda (x ...x) e)1 n

xi e

(cond (b e)⋯(b e))1 1 n n

bi
ei

CS450 ☽ Lists; quoting ☽ Lecture 5 ☽ Tiago Cogumbreiro 14 / 22

Quoting exercises:
We can write 'term rather than (quote term)
How do we serialize term (lambda (x) x) with quote?
How do we serialize term (+ 1 2) with quote?
How do we serialize term (cond [(> 10 x) x] [else #f]) with quote?
Can we serialize a syntactically invalid Racket program?

CS450 ☽ Lists; quoting ☽ Lecture 5 ☽ Tiago Cogumbreiro 15 / 22

Quoting exercises:
We can write 'term rather than (quote term)
How do we serialize term (lambda (x) x) with quote?
How do we serialize term (+ 1 2) with quote?
How do we serialize term (cond [(> 10 x) x] [else #f]) with quote?
Can we serialize a syntactically invalid Racket program? No! You would not be able to
serialize this expression (. Quote only accepts a S-expressions (parenthesis must be
well-balanced, identi�ers must be valid Racket identi�ers, number literals must be valid).
Can we serialize an invalid Racket program?

CS450 ☽ Lists; quoting ☽ Lecture 5 ☽ Tiago Cogumbreiro 15 / 22

Quoting exercises:
We can write 'term rather than (quote term)
How do we serialize term (lambda (x) x) with quote?
How do we serialize term (+ 1 2) with quote?
How do we serialize term (cond [(> 10 x) x] [else #f]) with quote?
Can we serialize a syntactically invalid Racket program? No! You would not be able to
serialize this expression (. Quote only accepts a S-expressions (parenthesis must be
well-balanced, identi�ers must be valid Racket identi�ers, number literals must be valid).
Can we serialize an invalid Racket program? Yes. For instance, try to quote the term:
(lambda)

CS450 ☽ Lists; quoting ☽ Lecture 5 ☽ Tiago Cogumbreiro 15 / 22

Quote example
#lang racket
(require rackunit)
(check-equal? 3 (quote 3)) ; Serializing a number returns the number itself
(check-equal? 'x (quote x)) ; Serializing a variable named x yields symbol 'x
(check-equal? (list '+ 1 2) (quote (+ 1 2))) ; Serialization of function as a list
(check-equal? (list 'lambda (list 'x) 'x) (quote (lambda (x) x)))
(check-equal? (list 'define (list 'x)) (quote (define (x))))

CS450 ☽ Lists; quoting ☽ Lecture 5 ☽ Tiago Cogumbreiro 16 / 22

Speci�cation

function-dec = (lambda (variable*) term+)

How do we get the parameter list?
How do we get the body?
What does variable* mean?
What does term+ mean?

On HW1 Q.4

The input format of the quoted
term are precisely described in
the slides of Lecture 3
You do not need to test
recursively if the terms in the
body of a function declaration
or de�nition are valid.
A list, with one symbol lambda
followed by zero or more
symbols, and one or more
terms.

Manipulating quoted terms

CS450 ☽ Lists; quoting ☽ Lecture 5 ☽ Tiago Cogumbreiro 17 / 22

Exercises with lists

18 / 22

Lists: example 1
Summation of all elements of a list

Spec

(require rackunit)
(check-equal? 10 (sum-list (list 1 2 3 4)))
(check-equal? 0 (sum-list (list)))

CS450 ☽ Lists; quoting ☽ Lecture 5 ☽ Tiago Cogumbreiro 19 / 22

Lists: example 1
Summation of all elements of a list

Spec

(require rackunit)
(check-equal? 10 (sum-list (list 1 2 3 4)))
(check-equal? 0 (sum-list (list)))

Solution

#lang racket
; Summation of all elements of a list
(define (sum-list l)
 (cond [(empty? l) 0]
 [else (+ (car l) (sum-list (cdr l)))]))

CS450 ☽ Lists; quoting ☽ Lecture 5 ☽ Tiago Cogumbreiro 19 / 22

Lists: example 2
Returns a list from n down to 1

Spec

(require rackunit)
(check-equal? (list) (count-down 0))
(check-equal? (list 3 2 1) (count-down 3))

CS450 ☽ Lists; quoting ☽ Lecture 5 ☽ Tiago Cogumbreiro 20 / 22

Lists: example 2
Returns a list from n down to 1

Spec

(require rackunit)
(check-equal? (list) (count-down 0))
(check-equal? (list 3 2 1) (count-down 3))

Solution

#lang racket
(define (count-down n)
 (cond [(�� n 0) (list)]
 [else (cons n (count-down (- n 1)))]))

CS450 ☽ Lists; quoting ☽ Lecture 5 ☽ Tiago Cogumbreiro 20 / 22

Lists: example 3
Point-wise pairing of two lists

Spec

(require rackunit)
(check-equal? (list (cons 3 30) (cons 2 20) (cons 1 10))
 (zip (list 3 2 1) (list 30 20 10)))
(check-equal? (list (cons 3 30) (cons 2 20) (cons 1 10))
 (zip (list 3 2 1) (list 30 20 10 5 4 3 2 1)))
(check-equal? (list (cons 3 30) (cons 2 20) (cons 1 10))
 (zip (list 3 2 1 90 180 270) (list 30 20 10)))

CS450 ☽ Lists; quoting ☽ Lecture 5 ☽ Tiago Cogumbreiro 21 / 22

Lists: example 3
Point-wise pairing of two lists

CS450 ☽ Lists; quoting ☽ Lecture 5 ☽ Tiago Cogumbreiro 22 / 22

Lists: example 3
Point-wise pairing of two lists

Solution

#lang racket
(define list-add cons) (define pair cons)
(define (zip l1 l2)
 (cond [(empty? l1) (list)]
 [(empty? l2) (list)]
 [else
 (list-add
 (pair (car l1) (car l2))
 (zip (cdr l1) (cdr l2)))]))

CS450 ☽ Lists; quoting ☽ Lecture 5 ☽ Tiago Cogumbreiro 22 / 22

