Homework 4

Deadline: March 26, Tuesday 5:30pm EST
Today we will...

- Introduce lexical scoping
- Learn about function closures
- Compute which variables are captured by a function declaration

Acknowledgment: Today's lecture is inspired by Professor Dan Grossman's wonderful lecture in CSE341 from the University of Washington: Video 1 Video 2 Video 3 Video 4
Lexical Scope

- **Binding**: association between a variable and a value.
- **Scope** of a binding: the text where occurrences of this name refer to the binding.
- **Lexical (or static) scope**: the innermost lexically-enclosing construct declaring that variable.

Did you know? In Computer Science, *static analysis* corresponds to analyzing the source code, without running the program.

```
(define (f)
  (define x 10) ; visible: f
  (define y 20) ; visible: f, f.x
  (+ x y)) ; visible: f, f.x, f.y

; visible: f
(define x 1)
; visible: f, x
(define y (+ x 1)) ; visible: f, x, y
(check-equal? (f) 30) ; yields (+ f.x f.y)
```
Lexical scope vs dynamic scope

- Lexical scoping is the default in all popular programming languages
- With lexical scoping, we can analyze the source code to identify the scope of every variable
- With lexical scoping, the programmer can reason about each function independently

What is a dynamic scope?

- Variable scope depends on the calling context
- Renders all variables global

appeared in McCarthy’s Lisp 1.0 as a bug and became a feature in all later implementations, such as MacLisp, Gnu Emacs Lisp.

Example

What is the result of evaluating \((g)\)?

```scheme
(define x 1)
(define (f y) (+ y x))
(define (g)
  (define x 2)
  (define y 3)
  (f (+ x y)))
(check-equal? (g) ???)
```
Example

What is the result of evaluating \((g)\)?

\[
\begin{align*}
\text{(define } x &\ 1) \\
\text{(define } (f \ f:y) (+ \ f:y \ x)) \\
\text{(define } (g) &
\begin{align*}
&\text{(define } g:x 2) \\
&\text{(define } g:y 3) \\
&\text{(f } (+ \ g:x \ g:y)))
\end{align*}
\end{align*}
\]

(check-equal? (g) 6)
Why lexical scoping?

- Lexical scoping is important for using functions-as-values
- To implement our Mini-Racket we will need to implement lexical scoping
Example

What is the result of evaluating \((g)\)?

```scheme
(define (g) x)
(define x 10)
(check-equal? (g) ??)
```
Example

What is the result of evaluating \((g)\)?

```
(define (g) x)
;; (g) throws an error here
(define x 10)

(check-equal? (g) 10)
```

We can define a function \(g\) that refers to an undefined variable \(x\); variable \(x\) must be defined before calling \(g\).
In Racket, variable definition produces a side-effect, as the definition of \(x\) impacted a previously defined function \(g\). In Unit 5, we implement the semantics of \texttt{define}.
Accessing variables outside a function

The body of a function can refer to variables defined outside of that function.

It can access variables is defined outside of the function, but where exactly?

The function's body can access any variable that is accessible/visible when the function is defined, which is known as the **lexical scope**.

In the following example, the function returns 3 and not 10, even though variable x is now 10.

```scheme
; For a given x create a new function that always returns x
(define (getter x) (lambda () x))
(define get3 (getter 3)); At creation time, x = 3
(define x 10)
(check-equal? 3 (get3)); At call time, x = 10
```
Function closures
Recall that functions capture variables

Function closure

- A function closure is the return value of function declaration (i.e., the function value)
- **Definition:** A function closure is a pair that stores a function declaration and its lexical environment (i.e., the state of each variable captured by the function declaration)
- The technique of creating a function closure is used by compilers/interpreters to represent function values

Recall that function declaration ≠ function definition:

- Function declaration: `(lambda (variable*) term+)
- Function definition: `(define (variable+) term+ `
Now we know what a function closure is

1. How to compute the variables in a closure
2. When to set the values of each variable in a closure
Function closures: captured variables

It is crucial for us to know how variables are captured in Racket.

Given an expression the set of free variables can be defined inductively:

- When the expression is a variable \(x \), the set of free variables is \(\{ x \} \).
- When the expression is a \((\text{lambda} \ (x) \ e)\), the set of free variables is that of expression \(e \) minus variable \(x \).
- When the expression is a function application \((e_1 \ e_2)\), the set of free variables is the union of the set of free variables of \(e_1 \) and the set of free variables of \(e_2 \).

Captured variables: Given an expression \((\text{lambda} \ (x) \ e)\) a function closure captures the set of free variables of expression \((\text{lambda} \ (x) \ e)\).
Captured variables examples

Let us compute \(\text{fv} (\text{lambda} (x) (+ x y)) \):

1. The free-variables of a \(\lambda \) are the free variables of the body of the function minus parameter \(x \).

\[
\text{fv} (\text{lambda} (x) (+ x y)) = \text{fv} (+ x y) \setminus \{x\}
\]

2. We are now in a case of function application, which is the union of the free variables of each of its sub expressions.

\[
\text{fv} (+ x y) \setminus \{x\} = (\text{fv}(+) \cup \text{fv}(x) \cup \text{fv}(y)) \setminus \{x\}
\]

4. Finally, we reach the case where each argument of \texttt{free-vars} is a variables.

\[
(\text{fv}(+) \cup \text{fv}(x) \cup \text{fv}(y)) \setminus \{x\} = (+\{x\} \cup \{y\}) \setminus \{x\} = {+, x, y} \setminus \{x\} = {+ , y}
\]
What creates an environment?

Definition: At any execution point there is an environment, which maps each variable to a value.

What creates environments:
- Each branch inside a `cond` creates an environment
- The body of a function creates an environment

What updates an environment:
- The arguments of a `lambda` are added to the function's body environment
- A `(define x e)` updates the current environment by adding/updating variable `x` and setting it to the value that results from evaluating `e`
Example 1: capture an argument

The lambda is capturing \(x \) as the parameter of \(\text{getter} \) at creation time, so when we call \(\text{getter3} \) we get \(\lambda () 3 \).

```scheme
(define (getter x)
  (lambda () x)); getter:x

(define get3 (getter 3)); getter:x = 3; (lambda () getter:x)
(check-equal? 3 (get3))
```
Example 3: cond starts a new scope

Function getter captured x at the outermost scope (the x captured at function declaration time). Inside the branches of cond we have a new scope, which means that getter is unaffected by the redefinition of x.

```
(define (getter) x); root.x
(define x 10); root.x = 10
; Each branch of the cond creates a new environment
; so it does not affect getter
(cond [#t (define x 20) (check-equal? 10 (getter))]
  (check-equal? 10 (getter)))
```
Example 3: define shadows parameters

Function *getter* returns variable `x` from the environment of function `f`. When calling `f 20` the last value of variable `x` in the scope of `f` is `10`, due to `(define x 10)`, which overwrites the function's parameter `x=20`.

```scheme
(define (f x)
  (define (getter) x); f.x = ?
  (define x 10); f.x = 10
  getter)

(define g (f 20))
(check-equal? 10 (g))
```
Exercises
Chuch's encoding

- Alonzo Church created the λ-calculus
- Church's Encoding is a treasure trove of λ-calculus expressions: it shows how natural numbers can be encoded
- Let us go through Church's encoding of booleans
- Examples taken from Colin Kemp's PhD thesis (page 17)
Encoding Booleans with \(\lambda\)-terms

Why? Because you will be needing test-cases.

```scheme
; True
(define TRUE '(lambda (a) (lambda (b) a)))

; False
(define FALSE '(lambda (a) (lambda (b) b)))

; Or
(define (OR a b) (list (list a TRUE) b))

; And
(define (AND a b) (list (list a b) FALSE))

; Negation
(define (NOT a) (list (list a FALSE) TRUE))

; Equals
(define (EQ a b) (list (list a b) (NOT b)))
```