
CS450
Structure of Higher Level Languages

Lecture 5: Structs, functions as values, and currying

Tiago Cogumbreiro

CS450 ☽ Structs, functions as values, and currying ☽ Lecture 5 ☽ Tiago Cogumbreiro 1 / 37

Deadlines are �nal!
1. Email requests for deadline extensions a few days before the deadline will be ignored.
2. You have around 14 days to work on each homework assignment.

Being unable to work for 3 days is no excuse to demand an extension.
3. Allowing extensions, would just compound the work with the following assignment.
4. In the case of an exceptional event, contact me as soon as possible. (See point 1.)

CS450 ☽ Structs, functions as values, and currying ☽ Lecture 5 ☽ Tiago Cogumbreiro 2 / 37

Tip #1: avoid �ghting the autograder
1. It's not personal: The autograder is not against you
2. It's not picky: The autograder is not against one speci�c solution
3. Correlation is not causation: Having a colleague with the same problem as you have,

does not imply that the autograder is wrong
4. Spend your time wisely: don't spend it thinking the autograder is wrong

Instead, discuss

1. Use the autograder for your bene�t: submit solution to test your hypothesis
2. Think before resubmitting: try explaining your solution to someone
3. Ask before resubmitting: write test cases and discuss those test cases with others

10% of your grade is participation, so discuss!

CS450 ☽ Structs, functions as values, and currying ☽ Lecture 5 ☽ Tiago Cogumbreiro 3 / 37

Tip #2: participate
10% of your grade is participation

Software engineering and academic life is about communication: you are expected to interact to
solve your homework assignments.

1. Exercises are explained succinctly on purpose: ask questions to know more
2. Exercises have few test cases on purpose: share test-cases to know more

Make time in your schedule to interact

CS450 ☽ Structs, functions as values, and currying ☽ Lecture 5 ☽ Tiago Cogumbreiro 4 / 37

Tip #3: time management
Work on your homework assignment incrementally

after each class you can solve a new exercise (with few exceptions)
when you get stuck in an exercise: (1) ask in our forum, and while you are waiting
(2) continue working on other exercises
don't leave everything to the weekend before submission

CS450 ☽ Structs, functions as values, and currying ☽ Lecture 5 ☽ Tiago Cogumbreiro 5 / 37

Bad

(and
 ; ...
 (list? (cadr node))
 (andmap symbol? (cdr node)))

Good

(and
 ; ...
 (list? (second node))
 (andmap symbol? (rest node)))

Tip #4: Do not use car/cdr for list manipulation
Reserve car/cdr to pairs only. This family of functions leads to subtle bugs due to typos.

Can you spot the bug in this excerpt from define-func??

CS450 ☽ Structs, functions as values, and currying ☽ Lecture 5 ☽ Tiago Cogumbreiro 6 / 37

Bad

(and
 ; ...
 (list? (cadr node))
 (andmap symbol? (cdr node)))

Good

(and
 ; ...
 (list? (second node))
 (andmap symbol? (rest node)))

Tip #4: Do not use car/cdr for list manipulation
Reserve car/cdr to pairs only. This family of functions leads to subtle bugs due to typos.

Can you spot the bug in this excerpt from define-func?? The code should be

(andmap symbol? (second node))

CS450 ☽ Structs, functions as values, and currying ☽ Lecture 5 ☽ Tiago Cogumbreiro 6 / 37

Tip #5: avoid using if
Bad-style uses of if/cond
1. We are not covering if in this course.
2. Most of you are holding it in the wrong way.

Whenever you write
(if condition foo #f)

or
(cond [condition foo] [else #f])

rewrite it to
(and condition foo)

The and-version is simpler and more concise.

CS450 ☽ Structs, functions as values, and currying ☽ Lecture 5 ☽ Tiago Cogumbreiro 7 / 37

Today we will…
Learn the use of structs to create data structures (exercise 5 of HW2)
Implement an AST using structs (exercise 5 of HW2)
Introduce functions as values (exercise 1 of HW2)
Currying (exercise 4 of HW2)

Acknowledgment: Today's lecture is inspired by Professor Dan Grossman's wonderful lecture in
CSE341 from the University of Washington.

CS450 ☽ Structs, functions as values, and currying ☽ Lecture 5 ☽ Tiago Cogumbreiro 8 / 37

https://courses.cs.washington.edu/courses/cse341/18au/lec7slides.pdf

Revisiting user data structures

9 / 37

Recall the 3D point from Lecture 3

; Constructor
(define (point x y z) (list x y z))
; Accessors
(define (point-x pt) (first pt))
(define (point-y pt) (second pt))
(define (point-z pt) (third pt))

And the name data structure

; Constructor
(define (name f m l) (list f m l))
; Accessor
(define (name-first n) (first n))
(define (name-middle n) (second n))
(define (name-last n) (third n))

User data structures

How do we prevent such errors?

(define p (point 1 2 3))
(name-first p) ; This should be an error, and instead it happily prints 1

CS450 ☽ Structs, functions as values, and currying ☽ Lecture 5 ☽ Tiago Cogumbreiro 10 / 37

Introducing struct
#lang racket
(require rackunit)
(struct point (x y z) #:transparent)
(define pt (point 1 2 3))
(check-equal? 1 (point-x pt)) ; the accessor point-x is automatically defined
(check-equal? 2 (point-y pt)) ; the accessor point-y is automatically defined
;
(struct name (first middle last))
(define n (name "John" "M" "Smith"))
(check-equal? "John" (name-first n))
(check-true (name? n)) ; We have predicates that test the type of the value
(check-false (point? n)) ; A name is not a point
(check-false (list? n)) ; A name is not a list
; (point-x n) ;; Throws an exception
; point-x: contract violation
; expected: point?
; given: #<name>)

CS450 ☽ Structs, functions as values, and currying ☽ Lecture 5 ☽ Tiago Cogumbreiro 11 / 37

Benne�ts of using structs
Reduce boilerplate code
Ensure type-safety

CS450 ☽ Structs, functions as values, and currying ☽ Lecture 5 ☽ Tiago Cogumbreiro 12 / 37

Implementing Racket's AST
Grammar

expression = value | variable | apply | define
value = number | void | lambda
apply = (expression+)
lambda = (lambda (variable*) term+)

CS450 ☽ Structs, functions as values, and currying ☽ Lecture 5 ☽ Tiago Cogumbreiro 13 / 37

Implementing values
value = number | void | lambda
lambda = (lambda (variable*) term+)

CS450 ☽ Structs, functions as values, and currying ☽ Lecture 5 ☽ Tiago Cogumbreiro 14 / 37

Implementing values
value = number | void | lambda
lambda = (lambda (variable*) term+)

(define (r:value? v)
 (or (r:number? v)
 (r:void? v)
 (r:lambda? v)))
(struct r:void () #:transparent)
(struct r:number (value) #:transparent)
(struct r:lambda (params body) #:transparent)

We are using a pre�x r: because we do not want to rede�ned standard-libary de�nitions.

CS450 ☽ Structs, functions as values, and currying ☽ Lecture 5 ☽ Tiago Cogumbreiro 14 / 37

Implementing expressions
expression = value | variable | apply
apply = (expression+)

CS450 ☽ Structs, functions as values, and currying ☽ Lecture 5 ☽ Tiago Cogumbreiro 15 / 37

Implementing expressions
expression = value | variable | apply
apply = (expression+)

(define (r:expression? e)
 (or (r:value? e)
 (r:variable? e)
 (r:apply? e)))
(struct r:variable (name) #:transparent)
(struct r:apply (func args) #:transparent)

In r:apply we distinguish between the expression that represents the function func, and the
(possibly empty) list of arguments args.

CS450 ☽ Structs, functions as values, and currying ☽ Lecture 5 ☽ Tiago Cogumbreiro 15 / 37

Implementing terms
term = define | expression
define = (define identifier expression) | (define (variable+) term+)

CS450 ☽ Structs, functions as values, and currying ☽ Lecture 5 ☽ Tiago Cogumbreiro 16 / 37

Implementing terms
term = define | expression
define = (define identifier expression) | (define (variable+) term+)

(define (r:term? t)
 (or (r:define? t)
 (r:expression? t)))
(struct r:define (var body) #:transparent)

For our purposes of de�ning the semantics in terms of implementing an interpreter, we do not
want to distinguish between a basic de�nition and a function de�nition, as this would
unnecessarily complicate our code. We, therefore, represent a de�nition with a single structure,
which pairs a variable and an expression (eg, a lambda). In our setting, the distinction between a
basic and a function de�nition is syntactic (not semantic).

CS450 ☽ Structs, functions as values, and currying ☽ Lecture 5 ☽ Tiago Cogumbreiro 16 / 37

Summary of struct
(struct point (x y z) #:transparent)

Simpli�es the de�nition of data structures:
Creates selectors automatically, eg, point-x
Creates type query, eg, point?
Ensures that functions of a given struct can only be used on values of that struct. Because, not
everything is a list.

What is #:transparent? A transparent struct prints its contents when rendered as a string.

CS450 ☽ Structs, functions as values, and currying ☽ Lecture 5 ☽ Tiago Cogumbreiro 17 / 37

Functions as values

18 / 37

What is functional programming
Functional programming has different meanings to different people

Avoid mutation
Using functions as values
A programming style that encourages recursion and recursive data structures
A programming model that uses lazy evaluation (discussed later)

CS450 ☽ Structs, functions as values, and currying ☽ Lecture 5 ☽ Tiago Cogumbreiro 19 / 37

First-class functions
Functions are values: can be passed as arguments, stored in data structures, bound to
variables, …
Functions for extension points: A powerful way to factor out a common functionality

CS450 ☽ Structs, functions as values, and currying ☽ Lecture 5 ☽ Tiago Cogumbreiro 20 / 37

Functions as parameters

21 / 37

Example

#lang racket
(define (double n) (* 2 n))
(define (monotonic? f x)
 (�� (f x) x))
;; Tests
(require rackunit)
(check-true (monotonic? double 3))
(check-false (monotonic? (lambda (x) (- x 1)) 3))

How do we evaluate?

 (monotonic? double 3)

Functions as parameters
Monotonic increasing function (for one input)

Function monotonic? takes a function f as a parameter and a value x, and then checks if f
increases monotonically for a given x.

CS450 ☽ Structs, functions as values, and currying ☽ Lecture 5 ☽ Tiago Cogumbreiro 22 / 37

Example

#lang racket
(define (double n) (* 2 n))
(define (monotonic? f x)
 (�� (f x) x))
;; Tests
(require rackunit)
(check-true (monotonic? double 3))
(check-false (monotonic? (lambda (x) (- x 1)) 3))

How do we evaluate?

 (monotonic? double 3)

= (�� (double 3) 3)
= (�� ((lambda (n) (* 2 n) 3) 3)
= (�� (* 2 3) 3)
= (�� 6 3)
= #t

Functions as parameters
Monotonic increasing function (for one input)

Function monotonic? takes a function f as a parameter and a value x, and then checks if f
increases monotonically for a given x.

CS450 ☽ Structs, functions as values, and currying ☽ Lecture 5 ☽ Tiago Cogumbreiro 22 / 37

Functions as parameters
Recursively apply a function n-times

Function apply-n takes a function f as parameter, a number of times n, and some argument x,
and then recursively calls (f (f (... (f x)))) an n-number of times.

#lang racket
(define (apply-n f n x)
 (cond [(�� n 0) x]
 [else (apply-n f (- n 1) (f x))]))
;; Tests
(require rackunit)
(define double (lambda (x) (* 2 x)))
(check-equal? (* 2 (* 2 (* 2 1))) (apply-n double 3 1))
(check-equal? (+ 3 (+ 3 (+ 3 1))) (apply-n (lambda (x) (+ 3 x)) 3 1))

CS450 ☽ Structs, functions as values, and currying ☽ Lecture 5 ☽ Tiago Cogumbreiro 23 / 37

Example apply-n
Let us unfold the following…

 (apply-n double 3 1) ; (�� 3 0) = #f

CS450 ☽ Structs, functions as values, and currying ☽ Lecture 5 ☽ Tiago Cogumbreiro 24 / 37

Example apply-n
Let us unfold the following…

 (apply-n double 3 1) ; (�� 3 0) = #f

= (apply-n double (- 3 1) (double 1))
= (apply-n double 2 2) ; (�� 2 0) = #f
= (apply-n double (- 2 1) (double 2))
= (apply-n double 1 4) ; (�� 1 0) = #f
= (apply-n double (- 1 1) (double 4))
= (apply-n double 0 8) ; (�� 0 0) = #t
= 8

CS450 ☽ Structs, functions as values, and currying ☽ Lecture 5 ☽ Tiago Cogumbreiro 24 / 37

Functions in data structures

25 / 37

Functions stored in data structures
"Freeze" one parameter of a function

In this example, a frozen data-structure stores a binary-function and the �rst argument.
Function apply1 takes a frozen data structure and the second argument, and applies the stored
function to the two arguments.

(struct frozen (func arg1) #:transparent)

(define (apply1 fr arg)
 (define func (frozen-func fr)) ; Bind a function to a local variable
 (define arg1 (frozen-arg1 fr))
 (func arg1 arg)) ; Call a function bound to a local variable

(define frozen-double (frozen * 2)) ; Store function '*' in a data structure
(define (double x) (apply1 frozen-double x))
(check-equal? (* 2 3) (double 3))

CS450 ☽ Structs, functions as values, and currying ☽ Lecture 5 ☽ Tiago Cogumbreiro 26 / 37

Unfolding (double 3)
 (double 3)
= (apply1 frozen-double 3)
= (apply1 (frozen * 2) 3)
= (define fr (frozen * 2))
 ((frozen-func fr) (frozen-arg1 fr) 3)
= (* 2 3)
= 6

CS450 ☽ Structs, functions as values, and currying ☽ Lecture 5 ☽ Tiago Cogumbreiro 27 / 37

Functions stored in data structures
Apply a list of functions to a value

#lang racket
(define (double n) (* 2 n))
; A list with two functions:
; * doubles a number
; * increments a number
(define p (list double (lambda (x) (+ x 1))))
; Applies each function to a value
(define (pipeline funcs value)
 (cond [(empty? funcs) value]
 [else (pipeline (rest funcs) ((first funcs) value))]))
; Run the pipeline
(check-equal? (+ 1 (double 3)) (pipeline p 3))

CS450 ☽ Structs, functions as values, and currying ☽ Lecture 5 ☽ Tiago Cogumbreiro 28 / 37

Creating functions dynamically

29 / 37

Example

#lang racket
(define (frozen-� arg1)
 (define (get-arg2 arg2)
 (* arg1 arg2)
 ; Returns a new function
 ; every time you call frozen-�
 get-arg2
(require rackunit)
(define double (frozen-� 2))
(check-equal? (* 2 3) (double 3))

Evaluating (frozen-� 2)

 (frozen-� 2)
= (define (get-arg2 arg2) (* 2 arg 2)) get-arg2
= (lambda (arg2) (* 2 arg))

Evaluating (double 3)

 (double 3)
= ((frozen-� 2) 3)
= ((lambda (arg2) (* 2 arg2)) 3)
= (* 2 3)
= 6

Returning functions
Functions in Racket automatically capture the value of any variable referred in its body.

CS450 ☽ Structs, functions as values, and currying ☽ Lecture 5 ☽ Tiago Cogumbreiro 30 / 37

Currying functions

31 / 37

Freezing binary-function

(struct frozen (func arg1) #:transparent)

(define (apply1 fr arg)
 (define func (frozen-func fr))
 (define arg1 (frozen-arg1 fr))
 (func arg1 arg))

(define frozen-double (frozen * 2))
(define (double x) (apply1 frozen-double x))
(check-equal? (* 2 3) (double 3))

Attempt #1

(define (freeze f arg1)
 (define (get-arg2 arg2)
 (f arg1 arg2))
 get-arg2)

(define double (freeze * 2))
(check-equal? (* 2 3) (double 3))

Revisiting "freeze" function

Our freeze function is more general than freeze-� and simpler than frozen-double. We
abstain from using a data-structure and use Racket's variable capture capabilities.

CS450 ☽ Structs, functions as values, and currying ☽ Lecture 5 ☽ Tiago Cogumbreiro 32 / 37

Attempt #2

(define (freeze f)
 (define (expect-1 arg1)
 (define (expect-2 arg2)
 (f arg1 arg2))
 expect-2)
 expect-1)

(define frozen-� (freeze *))
(define double (frozen-� 2))
(check-equal? (* 2 3) (double 3))

Evaluation

 (define frozen-� (freeze *))
= (define frozen-�
 (define (expect-1 arg1)
 (define (expect-2 arg2)
 (* arg1 arg2))
 expect-2)
 expect-1)

 (define double (frozen-� 2))
= (define double
 (define (expect-2 arg2) (* 2 arg2))
 expect-2)

 (double 3)
= (* 2 3)

Generalizing "frozen" binary functions

CS450 ☽ Structs, functions as values, and currying ☽ Lecture 5 ☽ Tiago Cogumbreiro 33 / 37

Currying functions
Currying is the general technique of "freezing" functions with multiple parameters. It provides a
way of delaying (and caching) the passage of multiple arguments by means of new functions.

A curried function is a unary function annotated with an uncurried function
arguments and a number of expected arguments that can be recursively de�ned as:

#lang racket
(define frozen-� (curry *))
(define double (frozen-� 2))
(require rackunit)
(check-equal? (* 2 3) (double 3))

curry (x)f ,n,a f

a n

curry (x) =f ,n+1,[a ,…,a]1 n
curry f ,n,[a ,…,a ,x]1 n

 curry (x) =f ,0,[a ,…,a]1 n
f(a , … , a ,x)1 n

CS450 ☽ Structs, functions as values, and currying ☽ Lecture 5 ☽ Tiago Cogumbreiro 34 / 37

In some programming languages functions
are curried by default. Examples include
Haskell and ML.
The term currying is named after Haskell
Curry, a notable logician who developed
combinatory logic and the Curry-Horward
correspondence (practical applications
include proof assistants).
Haskell was born in Millis, MA (1 hour
drive from UMB).

Source: public domain

Currying
Did you know?

CS450 ☽ Structs, functions as values, and currying ☽ Lecture 5 ☽ Tiago Cogumbreiro 35 / 37

http://www-history.mcs.st-andrews.ac.uk/PictDisplay/Curry.html

How do we implement Currying?

36 / 37

How do we implement Currying?
We need two components:

1. A function that accepts each argument in curried form. (Lecture 6)
2. When function (1) receives its last argument, it must apply the curried-function to the stored

curried arguments. (Lecture 9)

CS450 ☽ Structs, functions as values, and currying ☽ Lecture 5 ☽ Tiago Cogumbreiro 37 / 37

