
CS450
Structure of Higher Level Languages

Lecture 1: Course info, arithmetic in Racket

Tiago Cogumbreiro

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 1 / 24

About the course
Intructor: Tiago (蒂亚⼽) Cogumbreiro
Classes: Tuesday & Thursday
5:30pm to 6:45pm at M-1-0207, McCormack
Of�ce hours: Tuesday & Thursday
4:00pm to 5:30pm at S-3-183, Science Center
Course web page: piazza.com/umb/spring2019/cs450/

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 2 / 24

https://piazza.com/umb/spring2019/cs450/

Homework submission page
Please, take time to register on Gradescope, so that you can submit your homework assignments.

Homework submission page: www.gradescope.com/courses/37850
Your entry code is MR7WPD.
Please, register using your UMB email address, otherwise you won't be able to submit your
�rst homework.
Homework 1 is due February 12 at 5:30pm and your homework assignment sheet must be
picked up in person, as each student has a unique assignment. Please, contact me if you cannot
pick up your homework assignment page in class.
When uploading to Gradescope, please ensure the �lename is main.rkt, otherwise your
assignment will get 0 points.

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 3 / 24

https://www.gradescope.com/courses/37850

This course is …
on algorithms
For a nice free book read Algorithms by Jeff Erickson.
an introduction on programming and computing
For a nice free book read How to design programs by Matthias Felleisen, Robert Bruce
Findler, Matthew Flatt, Shriram Krishnamurthi
on programming with Racket
For a nice free book read The Racket Guide by Matthew Flatt, Robert Bruce Findler, and PLT

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 4 / 24

http://jeffe.cs.illinois.edu/teaching/algorithms/
https://htdp.org/2018-01-06/Book/
https://docs.racket-lang.org/guide/

This course is…
on designing programming language features
We will focus mainly on functional and object-oriented programming.
on semi-formal speci�cation
We will drive our course with precise mathematical notations and tests.
on programming patterns
We will characterize patterns and study abstractions of these patterns.
on purely functional programming
We will approach programming without using assignment (mutation).

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 5 / 24

Today we will learn
a formalism to describe a programming language (Racket)
the semantics of a programming language

How we will learn it
We introduce one language feature at a time

1. Syntax: We formalize each language feature (What)
2. Example: We illustrate a feature with an example
3. Semantics: We introduce how each language feature works (How)

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 6 / 24

Semantics
Abstract Syntax: how we write something. Example, which characters/string we use write a
keyword, or a number.
Semantics: what that something does/means (evaluation here means as the program runs)

In this class, we focus on the semantics of programming languages. We de�ne the semantics of
some programming language features.

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 7 / 24

1. We shall print to output!
Instead, we will use .

2. We shall mutate variables!
Instead, we will use .

3. We shall use loops!
Instead, we wll use .

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 8 / 24

Program
In Racket, everything evaluates down to or is a value. A Racket program consists of a preamble
followed by zero or more expressions:

program = #lang racket expression*

1. Racket has no end-of-line delimiters (contrary to, say, C-like languages which use semi-colons)
2. Racket evaluates each expression from top-to-bottom, left-to-right

For space-constraint reasons, code listings might omit the preamble.

Language speci�cation

Grayed out text represents the concrete syntax
Italic text represents a meta-variable

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 9 / 24

Expressions
Expressions can be values, among other things

expression = value | ⋯

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 10 / 24

Values
Numbers
Void
Booleans
Lists
…

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 11 / 24

Numbers

12 / 24

Numbers
All numbers are complex numbers. Some of them are real numbers, and all of the real numbers
that can be represented are also rational numbers, except for +inf.0 (positive in�nity), +inf.f
(single-precision variant), -inf.0 (negative in�nity), -inf.f (single-precision variant), +nan.0
(not-a-number), and +nan.f (single-precision variant). Among the rational numbers, some are
integers, because round applied to the number produces the same number.

Source: Racket Manual, Section 4.2

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 13 / 24

https://docs.racket-lang.org/reference/numbers.html

#lang racket
10 ; A positive number
+10 ; The plus sign is optional
-10 ; A negative number
0+1i ; A complex number
1/3 ; A rational number
0.33 ; A floating-point number

$ racket nums.rkt
10
10
-10
0+1i
1/3
0.33

Hello, Numbers!
Your �rst Racket program

Note: a semi-colon (;) initiates a comment section, which is ignored in Racket. A semi-colon is
not a end-of-line marker, like in C-like languages.

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 14 / 24

#lang racket
10
+10
-10
0+1i
1/3
0.33

#lang racket
10 +10 -10 0+1i 1/3 0.33

Expressions are separated by white-space
These two programs are equal:

Caveats: -1 is different than - 1 (notice the white space in between both characters). The former
is the negative one, the latter is the expression - and the value 1. Similarly, 1/3 is a single rational
number, whereas 1 / 3 are three expressions.

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 15 / 24

Function calls

16 / 24

#lang racket
(expt 2 3)
(sin (expt 2 3))

$ racket nums-func.rkt
8
0.1411200080598672

Function call
Delimited by parenthesis and its constituents are separated by white-space characters. The �rst
expression must evaluate to a function, the remaining expressions are the arguments. Each
expression is evaluated to a value from left-to-right before applying the function.

expression = value | variable | function-call |
function-call = (expression-func expression-arg*)

For instance, function call (expt 2 3), for exponentiation, returns 2 raised to the power of 3.
Function sin computes the sine function of its sole argument.

Note: Function calls can be compounded, as the parameters of a function are arguments too.

⋯

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 17 / 24

No in�x notation in Racket
There is NO INFIX NOTATION for arithmetic operations (unlike most languages).
The usual arithmetic operations are all just variables: addition +, subtraction -, multiplication *,
division /.
Example:

(* 3.14159 (* 10 10))
| | | | | | |�> Number
| | | | | |�> Number
| | | | |�> Variable
| | | |�> Function call
| | |�> Number
| |�> Variable
|�> Function call

Note: In Racket parenthesis represent function application. Contrasted with most C-like
languages where parenthesis in expressions are optional and only there to help the reader.

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 18 / 24

Evaluating a function call

19 / 24

Evaluating a function call
Evaluation works from left-to-right from top-to-bottom

#racket lang
; Version 1:
(* 3.14159 (* 10 10))
; Version 2:
(* 3.14159 100)
; ���- Evaluated (* 10 10)
; Version 3:
314.159
;������- Evaluated (* 3.14159 * 100)

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 20 / 24

Arithmetic expressions example
(+
 (+
 (* 11 15)
 (+ 14 4))
 (-
 (/ 3 9)
 (* 14 3)))

((11 ⋅ 15) + (14 + 4))+ (−
9
3

(14 ⋅ 3))

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 21 / 24

(+
 (+
 (* 11 15)
 (+ 14 4))
 (-
 (/ 3 9)
 (* 14 3)))

(+
 (+
 165
 (+ 14 4))
 (-
 (/ 3 9)
 (* 14 3)))

(+
 (+
 165
 18)
 (-
 (/ 3 9)
 (* 14 3)))

(+
 183
 (-
 (/ 3 9)
 (* 14 3)))

A longer example

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 22 / 24

(+
 (+
 (* 11 15)
 (+ 14 4))
 (-
 (/ 3 9)
 (* 14 3)))

(+
 (+
 165
 (+ 14 4))
 (-
 (/ 3 9)
 (* 14 3)))

(+
 (+
 165
 18)
 (-
 (/ 3 9)
 (* 14 3)))

(+
 183
 (-
 (/ 3 9)
 (* 14 3)))

(+
 183
 (-
 1/3
 (* 14 3)))

(+
 183
 (-
 1/3
 42))

(+
 183
 -125/3)

424/3

A longer example

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 22 / 24

Is this example a legal Racket program?
#lang racket
sin

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 23 / 24

Is this example a legal Racket program?
#lang racket
sin

Yes! sin is a variable, so a valid expression. Hence, Racket just prints what is in variable sin.
$ racket sin.rkt
#<procedure:sin>

Note: In Racket lingo the word procedure is a synonym for function.

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 23 / 24

Racket speci�cation
program = #lang racket expression*
expression = value | variable | function-call |
value = number |
function-call = (expression+)

⋯
⋯

CS450 ☽ Course info, arithmetic in Racket ☽ Lecture 1 ☽ Tiago Cogumbreiro 24 / 24

