
CS450
Structure of Higher Level Languages

Lecture 10: Implementing λ-Racket

Tiago Cogumbreiro

1 / 27

Homework 3
Deadline: March 7, Tuesday 5:30pm EST

2 / 27

Modules

3 / 27

Modules
Modules encapsulate a unit of functionality
A module groups a set of constants and functions
A module encapsulates (hides) auxiliary top-level functions
Each �le represents a module

CS450 ☽ Implementing λ-Racket ☽ Lecture 10 ☽ Tiago Cogumbreiro 4 / 27

File: foo.rkt

#lang racket
; Make variables a and c visible
(provide a c)
(define a 10)
(define b (+ a 30)
(define (c x) b)

File: main.rkt

(require "foo.rkt")
(c a)
; b is not visible

Modules in Racket
Each �le represents a module. A bindings becomes visible through the provide construct.
Function (require "filename") loads a module

(provide (all-defined-out)) makes all bindings visible
(provide a c) makes binding a and c visible
(require "foo.rkt") makes all bindings of the module in �le foo.rkt visible in the current
module. Both �les have to be in the same directory.

CS450 ☽ Implementing λ-Racket ☽ Lecture 10 ☽ Tiago Cogumbreiro 5 / 27

Unit 4
Implementing an interpreter:

The -calculusλ

6 / 27

Homework 4
Deadline: March 26, Tuesday 5:30pm EST

7 / 27

Today we will…
1. Overview how to design an interpreter
2. Introduce the -calculus formally
3. Discuss the implementation of the formal rules
4. Discuss test-cases

λ

CS450 ☽ Implementing λ-Racket ☽ Lecture 10 ☽ Tiago Cogumbreiro 8 / 27

Why should we care

about formalisms?

9 / 27

Source: www.youtube.com/watch?v=pgWTmOyUjtM

https://www.youtube.com/watch?v=pgWTmOyUjtM

For fundamental contributions to the theory
and practice of distributed and concurrent
systems, notably the invention of concepts
such as causality and logical clocks, safety
and liveness, replicated state machines, and
sequential consistency.

Did you know?

Lamport is the creator of TLA+ "a high-
level language for modeling programs and
systems" and verifying the correctness of
these models
Lamport also created LaTeX!

Source: lamport.org

Leslie Lamport
2013 Turing Award:

CS450 ☽ Implementing λ-Racket ☽ Lecture 10 ☽ Tiago Cogumbreiro 11 / 27

https://lamport.azurewebsites.net/tla/tla.html
https://amturing.acm.org/award_winners/lamport_1205376.cfm

The importance of formalisms
A mathematically precise speci�cation (no ambiguity)
Notation: condense information, an abstraction tool, a visualization aid

Limitations
Maintaining a speci�cation up-to-date with the implementation takes time and effort
Yet another thing to learn: Can everyone in the project understand the speci�cation?
What is the risk of a failure versus the time spent in specifying the software?

CS450 ☽ Implementing λ-Racket ☽ Lecture 10 ☽ Tiago Cogumbreiro 12 / 27

Implementing -Racket
A great way to learn is to implement

λ

13 / 27

How to implement a programming language?
In this class, we will learn how to implement an interpreter. In CS451/651 you can learn how
to implement a compiler.

1. The interpreter:
1. a parser converts the source code into an abstract-syntax-tree (a logical representation of

the program)
2. an interpreter executes the abstract-syntax-tree

2. The compiler:
1. a parser converts the source code into an abstract-syntax-tree
2. a compiler converts the abstract-syntax-tree into assembly (through a series of steps)

CS450 ☽ Implementing λ-Racket ☽ Lecture 10 ☽ Tiago Cogumbreiro 14 / 27

https://www.cs.umb.edu/academics/courses/CS451/
https://www.cs.umb.edu/academics/courses/CS651/

What is an interpreter
An interpreters executes programs of a given language

Usually, an interpreter executes a logical representation of the source code (known as the
abstract syntax).
An interpret repeatedly executes (evaluates) one instruction (expression) at a time, until the
program terminates.

Did you know?

Python, for instance, is known as an interpreter, but it actually compiles Python into a
assembly-like language that is then interpreted (executed). Racket works the same way as
Python. Java is also executed in the same way, but compilation is performed by the user.
Additionally, for performance reasons, some interpreters perform just-in-time compilation,
which dynamically translates (compiles) small parts of the language as machine code that is
executed directly by the CPU.

CS450 ☽ Implementing λ-Racket ☽ Lecture 10 ☽ Tiago Cogumbreiro 15 / 27

Text �le:

((lambda (x) x) 3)

Concrete syntax:

'((lambda (x) x) 3)

Abstract syntax:

(r:apply (r:lambda (list (r:variable 'x))

(list (r:variable 'x))) (list (r:number 3)))

Evaluation: (r:number 3)

⇓

⇓

⇓

16 / 27

Concrete Syntax of Micro-Racket
The concrete syntax dictates the syntactic structure of a program (how do we represent a
number, a variable, etc). This is not the focus of our course (refer to CS451/651).
We can easily sidestep the parsing issue by reminding ourselves that quote can serialize
Racket expressions into a data structure.

CS450 ☽ Implementing λ-Racket ☽ Lecture 10 ☽ Tiago Cogumbreiro 17 / 27

https://www.cs.umb.edu/academics/courses/CS451/
https://www.cs.umb.edu/academics/courses/CS651/

Abstract Syntax
In Racket

(define (r:expression? e) (or (r:value? e) (r:variable? e) (r:apply? e))) ; Utility predicate
(define (r:value? v) (or (r:number? v) (r:lambda? v))) ; Utility predicate
(struct r:number (value) #:transparent)
(struct r:variable (name) #:transparent)
(struct r:lambda (args body) #:transparent)
(struct r:apply (func args) #:transparent)

Mathematically

e ::= v ∣ x ∣ (e e) v :1 2 := n ∣ λx.e

CS450 ☽ Implementing λ-Racket ☽ Lecture 10 ☽ Tiago Cogumbreiro 18 / 27

The abstract syntax of our language
A formal notation

An expression is represented by letter

A value is represented by letter
A variable is represented by letter

A function application is represented by notation , where is an expression, and is
another expression. The subscript numbers are just a way to distinguish each expression.
A number is represented by letter

A function declaration is represented by

e ::= v ∣ x ∣ (e e) v :1 2 := n ∣ λx.e

e

v

x

(e e)1 2 e 1 e 2

n

λx.e

CS450 ☽ Implementing λ-Racket ☽ Lecture 10 ☽ Tiago Cogumbreiro 19 / 27

-calculus
Syntax

Semantics

Did you know?

The cornerstone of functional programming, and a foundation of logic (and mathematics)
The -calculus can be used to simulate any Turing machine
Invented in 1930, by Alonzo Church

Since λ-Racket is Turing complete, can you write a non-terminating program in λ-Racket?

λ

e ::= v ∣ x ∣ (e e) v :1 2 := n ∣ λx.e

v ⇓ v (E-val) (E-app)
(e e) ⇓ v f a b

e ⇓ λx.e e ⇓ v e [x ↦ v] ⇓ v f b a a b a b

λ

CS450 ☽ Implementing λ-Racket ☽ Lecture 10 ☽ Tiago Cogumbreiro 20 / 27

Example

We show that evaluating returns :

1. The expression is a function application, so we must apply rule
2. We evaluate function with rule , which is a value and therefore get the same

value back
3. We evaluate argument with rule , which is also a value and therefore we get the

same value back
4. Finally, we take the body of the function and substitute variable by the number 10 and

evaluate 10, which because it is a value we get 10 back.

((λx.x) 10) ⇓ 10

λx.x ⇓ λx.x 10 ⇓ 10 x[x ↦ 10] ⇓ v b

x[x ↦ 10] = 10 10 ⇓ 10

((λx.x) 10) 10

E-app

λx.x E-val

10 E-val

x x

CS450 ☽ Implementing λ-Racket ☽ Lecture 10 ☽ Tiago Cogumbreiro 21 / 27

λ-Racket semantics
We will use a more familiar notation. We de�ne the evaluation function that takes
an expression and returns a value .

Rule

Rule

eval(e) = v

e v

(E-val)

eval(v) = v

(E-app)

eval((e e)) = v f a b

eval(e) = (λ(x) e) eval(e) = v eval(subst(e ,x, v)) = v f b a a b a b

CS450 ☽ Implementing λ-Racket ☽ Lecture 10 ☽ Tiago Cogumbreiro 22 / 27

λ-Racket semantics, informally
Our objective is to evaluate an expression.

1. If the expression is a value, then we are in the base case, and we return value .

2. If the expression is a variable , this is an error, report it as such.
3. Otherwise, we have a function application . Recursively evaluate function down to a

value. Ensure that the result is a function declaration, say .

4. Recursively evaluate the argument of the function down to a value .
5. Substitute variable by value in , say . Recursively evaluate .

e e

x

(e e)f a e f

(lambda(x) e)d

e a v a

x v a e d e [x ↦d v]a e [x ↦d v]a

CS450 ☽ Implementing λ-Racket ☽ Lecture 10 ☽ Tiago Cogumbreiro 23 / 27

Variable substitution, formally
n[x ↦ v] = n

x[x ↦ v] = v

y[x ↦ v] = y if x ≠ y

λx.e[x ↦ v] = λx.e
λy.e[x ↦ v] = λy.e[x ↦ v] if x ≠ y

(e e)[x ↦1 2 v] = (e [x ↦1 v] e [x ↦2 v])

CS450 ☽ Implementing λ-Racket ☽ Lecture 10 ☽ Tiago Cogumbreiro 24 / 27

Variable substitution, informally
Objective: substitute variable by value in expression , notation .

1. If the expression is a number, say , then return .

2. If the expression is a variable and , then return . Otherwise, return .
3. If the expression is a function call , then return . That is,

recursively substitute each sub-expression.
4. If the expression is a function de�nition , then

What should we do?

x v e e[x ↦ v]

n n

y x = y v y

(e e)1 2 (e [x ↦1 v], e [x ↦2 v])

(λ(y) e) …

CS450 ☽ Implementing λ-Racket ☽ Lecture 10 ☽ Tiago Cogumbreiro 25 / 27

Test-case utility function
Function (check-r:eval? exp val) is given in the template to help you test effectively your code.

The use of check-r:eval is optional. You are encouraged to play around with r:eval directly.

1. The �rst parameter is an S-expression that represents the a valid expression
2. The second parameter is an S-expression that represents a valid value

λ

λ

CS450 ☽ Implementing λ-Racket ☽ Lecture 10 ☽ Tiago Cogumbreiro 26 / 27

Test-cases
; a number is a value, so we just return it
(check-r:eval? 1 1)
; a lambda is a value, so we just return it
(check-r:eval? '(lambda (x) x) '(lambda (x) x))
; function application
(check-r:eval? '((lambda (x) x) 10) 10)
; function application that returns a lambda and replaces a variable
(check-r:eval? '((lambda (y) (lambda (x) y)) 1) '(lambda (x) 1))

More examples

The University of Birmingham: Principles of Programming Languages 2009
Church encoding, Wikipedia

CS450 ☽ Implementing λ-Racket ☽ Lecture 10 ☽ Tiago Cogumbreiro 27 / 27

https://www.ics.uci.edu/~lopes/teaching/inf212W12/readings/lambda-calculus-handout.pdf
https://en.wikipedia.org/wiki/Church_encoding

