
CS450
Structure of Higher Level Languages

Lecture 11: Lexical scope and function closures

Tiago Cogumbreiro

1 / 23

Homework 4
Deadline: March 26, Tuesday 5:30pm EST

2 / 23

Today we will…
Introduce lexical scoping
Learn about function closures
Compute which variables are captured by a function declaration

Acknowledgment: Today's lecture is inspired by Professor Dan Grossman's wonderful lecture in
CSE341 from the University of Washington: Video 1 Video 2 Video 3 Video 4

CS450 ☽ Lexical scope and function closures ☽ Lecture 11 ☽ Tiago Cogumbreiro 3 / 23

https://courses.cs.washington.edu/courses/cse341/18au/lec14slides.pdf
https://courses.cs.washington.edu/courses/cse341/18au/videos/unit3/uncaptioned/049-lexical-scope.mp4
https://courses.cs.washington.edu/courses/cse341/18au/videos/unit3/uncaptioned/050-lexical-scope-and-functions.mp4
https://courses.cs.washington.edu/courses/cse341/18au/videos/unit3/uncaptioned/051-why-lexical-scope.mp4
https://courses.cs.washington.edu/courses/cse341/18au/videos/unit3/uncaptioned/052-closures-and-recomputation.mp4

Binding: association between a variable
and a value.
Scope of a binding: the text where
occurrences of this name refer to the
binding
Lexical (or static) scope: the innermost
lexically-enclosing construct declaring that
variable

Did you know? In Computer Science, static
analysis corresponds to analyzing the source
code, without running the program.

(define (f)
 (define x 10) ; visible: f
 (define y 20) ; visible: f, f.x
 (+ x y)) ; visible: f, f.x, f.y

; visible: f
(define x 1)
; visible: f, x
(define y (+ x 1))
; visible: f, x, y
(check-equal? (f) 30) ; yields (+ f.x f.y)

Lexical Scope

CS450 ☽ Lexical scope and function closures ☽ Lecture 11 ☽ Tiago Cogumbreiro 4 / 23

Variable scope depends on the calling
context
Renders all variables global

appeared in McCarthy’s Lisp 1.0 as a bug and became a
feature in all later implementations, such as MacLisp,
Gnu Emacs Lisp.

Moreau, L. Higher-Order and Symbolic Computation
(1998) 11: 233. DOI:10.1023/A:1010087314987

;; NOT VALID RACKET CODE!!!
(define (f) x)

(define (g x) (f))
(check-equal? (g 10) 10)

(define x 20)
(check-equal? (f) 20)

Lexical scope vs dynamic scope
Lexical scoping is the default in all popular programming languages
With lexical scoping, we can analyze the source code to identify the scope of every variable
With lexical scoping, the programmer can reason about each function independently

What is a dynamic scope?

CS450 ☽ Lexical scope and function closures ☽ Lecture 11 ☽ Tiago Cogumbreiro 5 / 23

https://doi.org/10.1023/A:1010087314987

(define x 1)

(define (f y) (+ y x))

(define (g)
 (define x 2)
 (define y 3)
 (f (+ x y)))

(check-equal? (g) ???)

Example
What is the result of evaluating (g)?

CS450 ☽ Lexical scope and function closures ☽ Lecture 11 ☽ Tiago Cogumbreiro 6 / 23

(define x 1)

(define (f f:y) (+ f:y x))

(define (g)
 (define g:x 2)
 (define g:y 3)
 (f (+ g:x g:y)))

(check-equal? (g) 6)

Example
What is the result of evaluating (g)?

CS450 ☽ Lexical scope and function closures ☽ Lecture 11 ☽ Tiago Cogumbreiro 7 / 23

Why lexical scoping?
Lexical scoping is important for using functions-as-values
To implement our Mini-Racket we will need to implement lexical scoping

CS450 ☽ Lexical scope and function closures ☽ Lecture 11 ☽ Tiago Cogumbreiro 8 / 23

Example
What is the result of evaluating (g)?

(define (g) x)

(define x 10)

(check-equal? (g) ??)

CS450 ☽ Lexical scope and function closures ☽ Lecture 11 ☽ Tiago Cogumbreiro 9 / 23

Example
What is the result of evaluating (g)?

(define (g) x)
; (g) throws an error here
(define x 10)

(check-equal? (g) 10)

We can de�ne a function g that refers to an unde�ned variable x; variable x must be de�ned
before calling g.
In Racket, variable de�nition produces a side-effect, as the de�nition of x impacted a previously
de�ned function g. In Unit 5, we implement the semantics of define.

CS450 ☽ Lexical scope and function closures ☽ Lecture 11 ☽ Tiago Cogumbreiro 10 / 23

Accessing variables outside a function
The body of a function can refer to variables de�ned outside of that function.

It can access variables is de�ned outside of the function, but where exactly?

The function's body can access any variable that is accessible/visible when the function is de�ned,
which is known as the lexical scope.
In the following example, the function returns 3 and not 10, even though variable x is now 10.

; For a given x create a new function that always returns x
(define (getter x) (lambda () x))
(define get3 (getter 3)) ; At creation time, x = 3
(define x 10)
(check-equal? 3 (get3)) ; At call time, x = 10

CS450 ☽ Lexical scope and function closures ☽ Lecture 11 ☽ Tiago Cogumbreiro 11 / 23

Function closures

12 / 23

Recall that functions capture variables
Function closure

A function closure is the return value of function declaration (i.e., the function value)
De�nition: A function closure is a pair that stores a function declaration and its lexical
environment (i.e., the state of each variable captured by the function declaration)
The technique of creating a function closure is used by compilers/interpreters to represent
function values

Recall that function declarion �� function de�nition:

Function declaration: (lambda (variable*) term+)
Function de�nition: (define (variable+) term+)

CS450 ☽ Lexical scope and function closures ☽ Lecture 11 ☽ Tiago Cogumbreiro 13 / 23

Now we know what a function closure is
1. How to compute the variables in a closure
2. When to set the values of each variable in a closure

CS450 ☽ Lexical scope and function closures ☽ Lecture 11 ☽ Tiago Cogumbreiro 14 / 23

Function closures: captured variables
It is crucial for us to know how variables are captured in Racket.

Given an expression the set of free variables can be de�ned inductively:
When the expression is a variable x, the set of free variables is { x }.
When the expression is a (lambda (x) e), the set of free variables is that of expression e
minus variable x.
When the expression is a function application (e1 e2), the set of free variables is the union of
the set of free variables of e1 and the set of free variables of e2.

Captured variables: Given an expression (lambda (x) e) a function closure captures the set of
free variables of expression (lambda (x) e).

CS450 ☽ Lexical scope and function closures ☽ Lecture 11 ☽ Tiago Cogumbreiro 15 / 23

Captured variables examples
Let us compute (lambda (x) (+ x y)):

1. The free-variables of a are the free variables of the body of the function minus parameter .

 (lambda (x) (+ x y)) = (+ x y)

2. We are now in a case of function application, which is the union of the free variables of each of
its sub expressions.

 (+ x y)

4. Finally, we reach the case where each argument of free-vars is a variables.

fv

λ x

fv fv ∖{x}

fv ∖{x} = (fv(+) ∪ fv(x) ∪ fv(y)) ∖ {x}

(fv(+) ∪ fv(x) ∪ fv(y)) ∖ {x} = ({+} ∪ {x} ∪ {y}) ∖ {x} = {+,x, y} ∖ {x} = {+, y}

CS450 ☽ Lexical scope and function closures ☽ Lecture 11 ☽ Tiago Cogumbreiro 16 / 23

What creates an environment?
De�nition: At any execution point there is an environment, which maps each variable to a value.
What creates environments:

Each branch inside a cond creates an environment
The body of a function creates an environment

What updates an environment:
The arguments of a lambda are added to the function's body environment
A (define x e) updates the current environment by adding/updating variable x and setting it
to the value that results from evaluating e

CS450 ☽ Lexical scope and function closures ☽ Lecture 11 ☽ Tiago Cogumbreiro 17 / 23

Example 1: capture an argument
The lambda is capturing x as the parameter of getter at creation time, so when we call
(getter3) we get (lambda () 3).

(define (getter x)
 (lambda () x)) ; getter:x

(define get3 (getter 3)) ; getter:x = 3; (lambda () getter:x)
(check-equal? 3 (get3))

CS450 ☽ Lexical scope and function closures ☽ Lecture 11 ☽ Tiago Cogumbreiro 18 / 23

Example 3: cond starts a new scope
Function getter captured x at the outermost scope (the x captured at function declaration time).
Inside the branches of cond we have a new scope, which means that getter is unaffected by the
rede�nition of x.

(define (getter) x) ; root.x
(define x 10) ; root.x = 10
; Each branch of the cond creates a new environment
; so it does not affect getter
(cond [#t (define x 20) (check-equal? 10 (getter))])
(check-equal? 10 (getter))

CS450 ☽ Lexical scope and function closures ☽ Lecture 11 ☽ Tiago Cogumbreiro 19 / 23

Example 3: de�ne shadows parameters
Function getter returns variable x from the environment of function f. When calling f 20 the
last value of variable x in the scope of f is 10, due to (define x 10), which overwrites the
function's parameter x=20.

(define (f x)
 (define (getter) x) ; f.x = ?
 (define x 10) ; f.x = 10
 getter)

(define g (f 20))
(check-equal? 10 (g))

CS450 ☽ Lexical scope and function closures ☽ Lecture 11 ☽ Tiago Cogumbreiro 20 / 23

Exercises

21 / 23

Alonzo Church created the λ-calculus
Church's Encoding is a treasure trove of λ-
calculus expressions: it shows how natural
numbers can be encoded
Let us go through Church's encoding of
booleans
Examples taken from Colin Kemp's PhD
thesis (page 17)

Chuch's encoding

CS450 ☽ Lexical scope and function closures ☽ Lecture 11 ☽ Tiago Cogumbreiro 22 / 23

https://en.wikipedia.org/wiki/Alonzo_Church
https://en.wikipedia.org/wiki/Church_encoding
https://ia600202.us.archive.org/11/items/TheoreticalFoundationsForPracticaltotallyFunctionalProgramming/33429551_PHD_totalthesis.pdf

Encoding Booleans with λ-terms
Why? Because you will be needing test-cases.

; True
(define TRUE '(lambda (a) (lambda (b) a)))
; False
(define FALSE '(lambda (a) (lambda (b) b)))
; Or
(define (OR a b) (list (list a TRUE) b))
; And
(define (AND a b) (list (list a b) FALSE))
; Negation
(define (NOT a) (list (list a FALSE) TRUE))
; Equals
(define (EQ a b) (list (list a b) (NOT b)))

CS450 ☽ Lexical scope and function closures ☽ Lecture 11 ☽ Tiago Cogumbreiro 23 / 23

