CS450

Structure of Higher Level Languages

Lecture 16: Garbage collection

Tiago Cogumbreiro

Today we will... 7

e Introduce memory management
« Reference counting garbage collection
e Mark-and-sweep garbage collection

I Inspired by Professor Michelle Mills' lecture on garbage collection, Colorado State University.

CS450) Garbage collection) Lecturele) Tiago Cogumbreiro

http://www.cs.colostate.edu/~mstrout/CS553Fall09/Slides/lecture04-GC.ppt.pdf

Motivation m

(eval-term*?

'[(E0)] 'E@

'[(define (f x) (lambda (y) x))
(f 2)
(f 10)
(f 5)]

'(closure E3 (lambda (y) x))

777)

CS450) Garbage collection) Lecturele) Tiago Cogumbreiro

Motivation m

(eval-term*?

'[(E0)] 'Ee

'[(define (f x) (lambda (y) x))
(f 2)
(f 10)
(f 5)]

'(closure E3 (lambda (y) x))

'[(E@ . [(f . (closure E@ (lambda (x) (lambda (y) x))))1)
(E1 . [E0 (x . 2)D
(E2 . [E@ (x . 19)])
(E3 . [E@ (x . 5)])])

CS450) Garbage collection) Lecturele) Tiago Cogumbreiro

Motivation m

(eval-term*?

'[(E0)]
'E0

'[(define (f x) (lambda (y) x))

(f 2)
(f 10)

(f 5)
(f 99)

(f 98)]

'(closure ?? (lambda (y) x))

'[(E@ . [(f . (closure E@ (lambda (x) (lambda (y) x))))])
(E1 . [E@ (x . 2)])
(E2 . [Eo (x . 10)])
(E3 . [E0 (X . 5)])

777

CS450) Garbage collection) Lecturele) Tiago Cogumbreiro

Motivation m

(eval-term*?

'[(E0)]
'E0

'[(define (f x) (lambda (y) x))
(f 2)
(f 10)
(f 5)
(f 99)
(f 98)]

'(closure E5 (lambda (y) x))

'[(E@ . [(f . (closure E@ (lambda (x) (lambda (y) x))))])
(E1 . [E0 (x . 2)])
(E2 . [E0 (x . 10)])
(E3 . [E0 (x . 5)])
(E4 . [E@ (x . 99)])
(E5 . [E@ (x . 98)])])

CS450) Garbage collection) Lecturele) Tiago Cogumbreiro

Motivation m

I Whenever we call function f it creates a new function, which allocates a new frame.

Do we need these frames?

CS450) Garbage collection) Lecturele) Tiago Cogumbreiro

Motivation M

I Whenever we call function f it creates a new function, which allocates a new frame.

Do we need these frames?

Can we reclaim them?

CS450) Garbage collection) Lecturele) Tiago Cogumbreiro

Motivation M

I Whenever we call function f it creates a new function, which allocates a new frame.
Do we need these frames?
Can we reclaim them?

How do we know IT we need these frames?

CS450) Garbage collection) Lecturele) Tiago Cogumbreiro

Memory management ?//l

I Objective: Discard any memory that will not be used in the future

e Manual: The programmer explicitly controls when data is reclaimed.

« Automatic (Garbage Collection): An algorithm controls when data is reclaimed

CS450) Garbage collection) Lecturele) Tiago Cogumbreiro

Memory management ?//l

e Soundness: we must only reclaim unneeded data.
Problem: Reclaiming memory too soon leads to dangling references, which gives rise to crashes

or security breaches.

o Completeness: we must eventually reclaim unneeded data.
Problem: Forgetting to reclaim memory leads to resource depletion, which gives rise to

memory swapping, slowness, or denial of service.

Quiz

1T our garbage collector works by never reclaiming memory. Is it sound? Is it complete?

CS450) Garbage collection) Lecturele Y Tiago Cogumbreiro

Memory management challenges M

The choice between automatic and manual memory management is a balance between many
design constrains:

. what is the impact of a soundness failure? low impact, then manual

. what is the impact of a completeness failure? low impact, then automatic
. how easy to program? easy —> automatic

. how easy to profile? easy = manual

. how easy to implement? easy > manual

S O = W DN =

. human intervention? ok = manual

CS450) Garbage collection) Lecturele) Tiago Cogumbreiro

Manual memory management M

Pro: Can be very efficient

Pro: Lets the programmer control when memory should be reclaimed (eg, real time problems,
games)

Pro: Implementing manual memory management is generally easier than automatic memory
management

Con: More code to maintain

Con: Ensuring correctness can be difficult and hazardous

Did you know?

Rust is an example of a new language that introduces manual memory management that is
assisted by the compiler, which helps in reducing memory-management code and also enforces
correctness. The implementation of this technique is considerably more involved tha a traditional
unsafe memory management.

CS450) Garbage collection) Lecturele Y Tiago Cogumbreiro

Automatic memory management M

e Pro: Less code to maintain
e Pro: Memory-management correctness is guaranteed (aka memory safety)
e Con: More difficult to control when memory should be reclaimed

e Con: Implementing automatic memory management is generally more complicate than manual
memory management

Did you know?

1. Researchers are experimenting with extending C# with API's that allow for safe manual
memory management (Parkinson ef al, 2017), allowing the programmer to get the best of
both worlds.

2. One of the biggest difficulties of handling automatic memory management is parallelism;
concurrent garbage collection is one of the most intricate pieces of technology in
programming language development.

CS450) Garbage collection) Lecturele) Tiago Cogumbreiro

https://www.microsoft.com/en-us/research/wp-content/uploads/2017/07/snowflake-extended.pdf

Garbage collection M

aka Automatic memory management

Garbage collection must be conservative

How do we know if a piece of memory will be used in the future? The garbage collector cannot
predict the future.

Therefore, garbage collection can only discard memory it can prove that cannot be used. Proving
that some memory is not needed is done by finding its uses (references).

Did you know?

The garbage collector must be able to iterate over all references in memory. In C any number
can be considered a pointer, which makes C garbage collection unsound by definition. The
garbage collector must introduce assumptions. For instance, assume that numbers will never
used as references.

CS450) Garbage collection) Lecturele) Tiago Cogumbreiro

Garbage collection ?//l

Overview

e Reference counting: incrementally maintain the count of memory usage; when count is zero
reclaim memory (eg, Python, C+--, Objective-C, Rust)

e Reachability: do a full-memory sweep by following references; unreachable memory is
discarded (eg, Racket, Java, JavaScript)

CS450) Garbage collection) Lecturele Y Tiago Cogumbreiro

http://jayconrod.com/posts/55/a-tour-of-v8-garbage-collection

Garbage collection:

Reference counting

15/33

Reference counting

A,

UMASS
BOSTON

1. Map the reference count for each handle in the heap

2. When allocating a handle, that reference is set to 0; increment each reference in the initial

value

3. When updating a handle, decrement each reference in the old value and increment each

reference of the new value

4. If a reference count reaches zero, then that reference is garbage; collect it!

Example
Node x = null; Node y = null; (define
x = new Node(3, null); (define
V = X (define
x = null; (define
V = X; (define

(define
(define

h1-eff (heap-alloc h@ (list 3 null)))
h1 (eff-state h1-eff))

o1 (eff-result h1-eff))

h2 (heap-put h1 x o1))

h3 (heap-put h2 y (heap-get x)))

h4 (heap-put h3 x null))

hS (heap-put h4 y (heap-get x)))

CS450) Garbage collection) Lecturele) Tiago Cogumbreiro

Reference counting example (1) 7

BOSTON

By inspecting the frames allocated in the heap we can compute the reference count of each
handle. We can garbage collect any frame whose reference count is zero. 4 handle is
referenced by a frame if, and only if, the handle is contained in a frame. If E is a parent handle in
a frame, then it is contained in that frame. If E is the environment of a closure stored in a local
binding of a frame, we say that E is contained in that frame.

Which handles are garbage?

Heap

'[(E0 . [(f . (closure E@ (lambda (x) (lambda (y) x))))1)
(E1 . [E0 (x . 2)])
(E2 . [E0 (x . 19)])
(E3 . [E0 (x . 5]

CS450) Garbage collection) Lecturele) Tiago Cogumbreiro

Reference counting example (1) M

By inspecting the frames allocated in the heap we can compute the reference count of each
handle. We can garbage collect any frame whose reference count is zero. 4 handle is

referenced by a frame if, and only if, the handle is contained in a frame. If E is a parent handle in
a frame, then it is contained in that frame. If E is the environment of a closure stored in a local
binding of a frame, we say that E is contained in that frame.

Which handles are garbage?

Heap Reference count
'[(E0 . [(f . (closure E@ (lambda (x) (lambda (y) x))))1) EQ: 4
(E1 . [E0 (x . 2)] E1: 0
(E2 . [E@ (x . 10)]) E2: 0
(3 .[E0 (x . 5]] E3: 0

I We can safely collect ET1, E2, and E3.

CS450) Garbage collection) Lecturel6) Tiago Cogumbreiro

Reference count example (2) M

(eval-term*?
'[(E0)]
'EQ
'[
(define (f x)
(define (z a) x)
(lambda (y) (z v)))
(f 0)
(f 10)]
'(closure E2 (lambda (y) (z y)))
'[(E@ . [(f . (closure E@ (lambda (x) (define (z a) x) (lambda (y) (z y)))))1)

(E1 . [E@ (x . B8) (z . (closure E1 (lambda (a) x)))])
(E2 . [E@ (x . 18) (z . (closure E2 (lambda (a) x))DD

CS450) Garbage collection) Lecturele) Tiago Cogumbreiro

Reference count example (2) M

(eval-term*?
'[(E0)]
'EQ
'[
(define (f x)
(define (z a) x)
(1ambda (y) (z v)))
(f 0)
(f 10)]
'(closure E2 (lambda (y) (z y)))
'[(E@ . [(f . (closure E@ (lambda (x) (define (z a) x) (lambda (y) (z y)))))1)

(E1 . [E@ (x . B8) (z . (closure E1 (lambda (a) x)))])
(E2 . [E® (x . 18) (z . (closure E2 (lambda (a) x))DD

Reference counting

EQ: 3 E1: 1 E2: 1

CS450) Garbage collection) Lecturele) Tiago Cogumbreiro

Reference counting M

Allocation and update time overhead: must traverse the values being stored for reference
counting update

Reclamation is local and incremental heap becomes fragmented

Cannot handle cyelic data structures

Space overhead: must maintain the reference counting for each handle

Reclamation is predictable: we can infer exactly when memory reclamation is happening,
which is useful for time-sensitive algorithms (such as real time algorithms and games)

Reference counting is of limited use to us

because frames can have cycles!

CS450) Garbage collection) Lecturele) Tiago Cogumbreiro

Garbage collection:

Reachablility

20/33

Reachability (aka tracing) 7

Mark-and-sweep algorithm

1. Mark. Your starting point are your "globals”. For each reference, traverse its usages, while
collecting all visited references; avoid cycles.

2. Sweep. Copy all visited references to a new heap and discard old heap.

CS450) Garbage collection) Lecturele) Tiago Cogumbreiro

Mark-and-sweep example (1) M

The heap can represent a graph where we draw a reference-use edge from each key to each
handle in the values. If we start Mark-and-sweep from E@, then we can collect E1, E2, and E3.

Heap

'[(E@ . (f closure E@ (lambda (x) (lambda (y) x))))

(E1 . [E0 (x . 2)])
(E2 . [E@ (x . 10)])
(E3 . [E@ (x . 5)]]

CS450) Garbage collection) Lecturele) Tiago Cogumbreiro

Mark-and-sweep example (1) M

The heap can represent a graph where we draw a reference-use edge from each key to each
handle in the values. If we start Mark-and-sweep from E@, then we can collect E1, E2, and E3.

///////////////

Heap '// - \\, ,\// - N ‘// B3 N

'[EE@ : [(f c%osureﬁ)@ (lambda (x) (lambda (y) x))))

E1 . LE@® (x . 2

(€2 . [£0 (x . 10)])
(E3 . [E@ (x . 5)1)]

CS450) Garbage collection) Lecturele) Tiago Cogumbreiro

Mark-and-sweep example (2) M

If we start Mark-and-sweep from E@, then we can safely garbage collect E1 and E2, as it cannot
be reached from any global, that is we cannot reach E1 nor E2 from E@.

Heap

'[(E@ . [(f . (closure E@ (lambda (x) (define (z a) x) (lambda (y) (z y))))) 1)
(E1 . [E@ (x . @) (z . (closure E1 (lambda (a) x))) 1)
(E2 . [E@ (x . 18) (z . (closure E2 (lambda (a) x))) 1)

]

Reference use

CS450) Garbage collection) Lecturele) Tiago Cogumbreiro

Mark-and-sweep summary ?//l

e No allocation and no update time overhead

Reclamation is global must stop the world must copy all references from one heap to another;
the whole heap must be traversed; no fragmentation

No space overhead per-reference

Space overhead to ereate new heap

Reclamation is not predictable: garbage collection is a global operation so no amortization
possible

CS450) Garbage collection) Lecturele) Tiago Cogumbreiro

Mark-and-sweep example (3) M

I If start Mark-and-sweep from E2, then we can safely garbage collect E1.

Heap

'[(E0 . [(x . 10)])
(E1 . [E@ (x . 20)])
(E2 . [E@ (x . 30)])

]

Reference use

CS450) Garbage collection) Lecturele) Tiago Cogumbreiro

A,

Handle creation problem iass
Before garbage collection After garbage collection
'[(Ee . [(x . 10)]) '[(Ee . [(x . 10)])
(E1 . [E@ (x . 20)]) (E2 . [E@ (x . 30) 1)
: (E2 . [E@ (x . 30)])

I What happens if we allocate some data in the heap above?

(define (heap-alloc h v)
(define new-id (handle (hash-count (heap-data h))))
(define new-heap (heap (hash-set (heap-data h) new-id v)))
(eff new-heap new-id))

CS450) Garbage collection) Lecturele) Tiago Cogumbreiro

Handle creation problem M

I What happens if we allocate frame [E@ (x . 9)] (some frame without bidings)?
Before adding a frame

'[(Ee . [(x . 10)])
(E2 . [E@ (x . 30)])

CS450) Garbage collection) Lecturele) Tiago Cogumbreiro

Handle creation problem m

I What happens if we allocate frame [E@ (x . 9)] (some frame without bidings)?
Before adding a frame

'[(Ee . [(x . 10)])
(E2 . [E@ (x . 30)])

After adding a frame

'[(E0 . [(x . 10)])
(E2 . [E@ (x . 9) 1)

Using hash-count is not enough!

We must ensure that handle creation plays well with GC

CS450) Garbage collection) Lecturele) Tiago Cogumbreiro

Moving versus non-moving garbage collectiorfé?z

« Non-moving. If garbage collection simply claims unreachable data, then garbage collection
faces the problem of fragmentation (which we noticed in the previous example)

« Moving. Alternatively, garbage collection may choose to "move" the references around by
placing data in different locations, which handles the problem of fragmentation, but now it
must be able to translate the references in the data

CS450) Garbage collection) Lecturele) Tiago Cogumbreiro

Specifying Mark-and-sweep 7

Specitying Mark

Given an initial handle, collect the set of reachable handles.
We say that a handle x directly connects to a handle y if handle Yy is contained in the frame

addressed by . We say that a handle is contained in frame in either situation:

1. If the frame has a parent, then that handle is contained in the frame.

2. If a closure is a local value of the frame, and that closure captures handle x, then x is
contained in the frame.

CS450) Garbage collection) Lecturele) Tiago Cogumbreiro

Speciftying Mark M

Homework 6

IﬁFunctknlframe-refsInustreturniinisetofcontahuklhandh%a

Examplel Example 2
(check-equal? (check-equal?
(frame-refs (frame-refs
(parse-frame (parse-frame
'(E2
(x . 9) '"((x . 9)
(y . (closure E@ (lambda (x) x))) (y . (closure E@ (lambda (x) x)))
(z . (closure E1 (lambda (x) x)))))) (z . (closure E1 (lambda (x) x))))))
(set (handle @) (handle 1) (handle 2))) (set (handle @) (handle 1)))

CS450) Garbage collection) Lecturele) Tiago Cogumbreiro

Sets in Racket ?//l

(require racket/set)

Constructors

. (set v1 v2 v3 ...) creates a (possibly empty) set of values, corresponds to {’01, V9, V3, . . . }

(set-union s1 s2) returns a new set that holds the union of sets s1 and s2, corresponds to
S1 U 89

(set-add s x) returns a new set that holds the elements of s and also element X, corresponds
tos U {z}

(set-subtract s1 s2) returns a new set that consists of all elements that are in s1 but are not
in s2, corresponds to {x | ¢ € s1 Az & $2}

CS450) Garbage collection) Lecturele) Tiago Cogumbreiro

Sets in Racket M

Selectors

o (set-member? s x) returns if x is a member of set s, corresponds to x € S

« (set—>1list s) converts set s into a list

Homework ©

How do you iterate over the values of a frame? You might want to look at function frame-fold
or function frame-values.

CS450) Garbage collection) Lecturele) Tiago Cogumbreiro

Specifying Mark-and-sweep e
Specifying Sweep

1. What is the input?

CS450) Garbage collection) Lecturele) Tiago Cogumbreiro

Specifying Mark-and-sweep 7

Specifying Sweep

1. What is the input? heap? and set of handles
2. Which functional pattern?

CS450) Garbage collection) Lecturele) Tiago Cogumbreiro

Specifying Mark-and-sweep 7

Specifying Sweep

1. What is the input? heap? and set of handles

2. Which functional pattern? A filter. See heap-filter.
3. What are we keeping?

CS450) Garbage collection) Lecturele) Tiago Cogumbreiro

Specifying Mark-and-sweep 7

Specifying Sweep

1. What is the input? heap? and set of handles

2. Which functional pattern? A filter. See heap-filter.
3. What are we keeping? All handles in the input set

CS450) Garbage collection) Lecturele) Tiago Cogumbreiro

