Implementing inductive definitions
A primer
Implementing inductive definitions

A primer

Disciplining an ambiguous presentation medium to communicate a precise mathematical meaning (notation and convention)

- Implementing algorithms written in a mathematical notation
- Discuss recursive functions (known as inductive definitions)
- Present various design choices
- We are restricting ourselves to the specification of functions (If $M(x) = y$ and $M(x) = z$, then $y = z$)
Equation notation

- Function $M(n)$ has one input n and one output after the equals sign.
- Each rule declares some pre-conditions
- The result of the function is only returned if the pre-conditions are met

Formally

$$M(n) = n - 10 \quad \text{if } n > 100$$
$$M(n) = M(M(n + 11)) \quad \text{if } n \leq 100$$

Implementation

- Each branch of the condition represents a rule
- The condition of each branch should be the pre-condition
Equation notation

- Function $M(n)$ has one input n and one output after the equals sign.
- Each rule declares some pre-conditions
- The result of the function is only returned if the pre-conditions are met

Formally

\[
M(n) = n - 10 \quad \text{if } n > 100 \\
M(n) = M(M(n + 11)) \quad \text{if } n \leq 100
\]

Implementation

- Each branch of the `cond` represents a rule
- The condition of each branch should be the pre-condition

```
(define (M n)
  (cond
    [(> n 100) (- n 10)]
    [(<= n 100) (M (M (+ n 11)))]
  )
)```
Fraction notation

- We can use the "fraction"-based notation to represent pre-conditions
- Above is a pre-condition, below is the result of the function
- The result is only available if the pre-condition holds

Formally

\[
\begin{align*}
\frac{n > 100}{M(n) = n - 10} & \quad \frac{n \leq 100}{M(n) = M(M(n + 11))}
\end{align*}
\]
Fraction notation

- We can use the "fraction"-based notation to represent pre-conditions
- Above is a pre-condition, below is the result of the function
- The result is only available if the pre-condition holds

Formally

\[
\begin{align*}
\text{if } n > 100 & \quad \text{then } M(n) = n - 10 \\
\text{if } n \leq 100 & \quad \text{then } M(n) = M(M(n + 11))
\end{align*}
\]

Implementation

```
(define (M n)
 (cond
 [(> n 100) (- n 10)]
 [(<= n 100) (M (M (+ n 11)))]))
```
Multiple pre-conditions in fraction-notation

- Fraction-based notation admits multiple pre-conditions
- The result only happens if all pre-conditions are met (logical conjunction)
- We are only interested in function calls that do always succeed (ignore errors)
- Since we are defining functions, only one output is possible at any time

\[
\begin{align*}
\frac{n > 100}{M(n) = n - 10} & \quad \frac{M(n + 11) = x}{M(x) = y} & \quad n \leq 100 \\
M(n) &= y
\end{align*}
\]

- In the second rule, note the implicit dependency between variables
- The dependency between variables, specifies the implementation order (eg, \(x\) must be defined before \(y\))
Multiple pre-conditions in fraction-notation

- Fraction-based notation admits multiple pre-conditions
- The result only happens if all pre-conditions are met (logical conjunction)
- We are only interested in function calls that do always succeed (ignore errors)
- Since we are defining functions, only one output is possible at any time

\[
\begin{align*}
\text{if } n > 100 & \quad \text{then } M(n) = n - 10 \\
\text{if } n \leq 100 & \quad \text{then } M(n) = y \\
\end{align*}
\]

- In the second rule, note the implicit dependency between variables
- The dependency between variables, specifies the implementation order (eg, x must be defined before y)

```
(define (M n)
 (cond
 [(> n 100) (- n 10)]
 [(<= n 100)
 (define x (M (+ n 11)))
 (define y (M x))
 y])
```

\[
\begin{align*}
M(n + 11) &= x \\
M(x) &= y \\
\end{align*}
\]
The equal sign is optional

- The distinction between input and output should be made clear by the author of the formalism

\[
\begin{align*}
n > 100 & \quad \frac{M(n) = n - 10}{M(n + 11) = x} \\
M(n) = y & \quad M(x) = y \quad n \leq 100
\end{align*}
\]
The equal sign is optional

- The distinction between input and output should be made clear by the author of the formalism.

\[
\begin{align*}
M(n) &= n - 10 \\
M(n + 11) &= x & M(x) &= y & n \leq 100
\end{align*}
\]

We can use any symbol!

Let us define the \( M \) function with the \( \radio \) symbol. The intent of notation is to aid the reader and reduce verbosity.

\[
\begin{align*}
\text{If } n > 100 \quad &\text{then } n - 10 \\
\text{If } n \leq 100 \quad &\text{then } y
\end{align*}
\]

How do we write \( M(M(n + 11)) \)?
Pattern matching rules

- The pre-condition is implicitly defined according to the **structure** of the input
- **First rule:** can only be applied if the list is empty
- **Second rule:** can only be applied if there is at least one element in the list

\[
qs([\]) = []
\]

\[
qs([x \mid x < p \land x \in l]) = l_1 \quad qs([x \mid x \geq p \land x \in l]) = l_2
\]

\[
qs(p :: l) = l_1 \cdot [p] \cdot l_2
\]
Pattern matching rules (implementation)

\[
\begin{align*}
    \text{(define (qs l)} & \quad \text{cond} \\
    & \quad [(\text{empty? } l) \text{ empty}] ; \quad \text{qs}([]) = [] \\
    & \quad [\text{else} \\
    & \quad ; \text{Input: } p :: r \\
    & \quad (\text{define } p (\text{first } l)) \\
    & \quad (\text{define } r (\text{rest } l)) \\
    & \quad ; \text{qs}([ x \mid x < p \lor x \in l]) = \text{l1} \\
    & \quad (\text{define } \text{l1} (\text{qs} (\text{filter} (\lambda (x) (< x p)) r))) \\
    & \quad ; \text{qs}([ x \mid x \geq p \lor x \in l]) = \text{l2} \\
    & \quad (\text{define } \text{l2} (\text{qs} (\text{filter} (\lambda (x) (\geq x p)) r))) \\
    & \quad ; \text{l1} . p . \text{l2} \\
    & \quad (\text{append } \text{l1} (\text{cons } p \text{ l2})))
\end{align*}
\]
Homework assignment 4

- **Exercise 1.** Function \( e[x := v] \) is \((s:\text{subst} \ exp \ var \ val)\), where \( e \) is \( \exp \), \( x \) is \( \text{var} \), and \( v \) is \( \text{val} \).

- **Exercise 2.** Function \( e \downarrow v \) is \((s:\text{eval} \ \text{subst} \ \exp)\), where \( e \) is \( \exp \), \( v \) is the return value (not displayed in the function signature).

In the exercise, parameter \( \text{subst} \) represents the substitution function (local tests use your own implementation, remote tests use a correct implementation of \( \text{subst} \)).

- **Exercise 3.** Function \( e \downarrow ^E v \) is \((e:\text{eval} \ \text{env} \ \exp)\), where \( e \) is \( \exp \), \( E \) is \( \text{env} \), \( v \) is the return value (not displayed in the function signature).
Language $\lambda_F$

How do we add support for definitions?
How do we add support for definitions?

- We extend the our language ($\lambda_F$) with define
- We introduce the AST
- We discuss parsing our language
Understanding definitions

Syntax

\[ t ::= e \mid t; t \mid (\text{define } x \ e) \]

\[ e ::= v \mid x \mid (e_1 \ e_2) \mid \lambda x.\ t \quad v ::= n \mid (E, \lambda x.\ t) \mid \text{void} \]

- New grammar rule: *terms*
- A program is now a non-empty sequence of terms
- Since we are describing the **abstract** syntax, there is no distinction between a basic and a function definition
- Since evaluating a definition returns a void, we need to update values
Values

We add \texttt{void} to values.

\[ v ::= n \mid (E, \lambda x. t) \mid \texttt{void} \]

Racket implementation

```racket
;; Values
(define (f:value? v) (or (f:number? v) (f:closure? v) (f:void? v)))
(struct f:number (value) #:transparent)
(struct f:closure (env decl) #:transparent)
(struct f:void () #:transparent)
```
Expressions

Expressions remain unchanged.

$$e ::= v \mid x \mid \left( e_1 e_2 \right) \mid \lambda x.t$$

Racket implementation

```scheme
(define (f:expression? e) (or (f:value? e) (f:variable? e) (f:apply? e) (f:lambda? e)))
(struct f:variable (name) #:transparent)
(struct f:apply (func args) #:transparent)
(struct f:lambda (params body) #:transparent)
```
We implement terms below.

\[ t ::= e \mid t; t \mid (\text{define } x \ e) \]

Racket implementation

```racket
(define (f:term? t) (or (f:expression? t) (f:seq? t) (f:define? t)))
(struct f:seq (fst snd) #:transparent)
(struct f:define (var body) #:transparent)
```

The body of a function declaration is a single term
The body is no longer a list of terms!

A sequence is not present in the concrete syntax, but it simplifies the implementation and formalism (see reduction)
Our parser handles multiple terms in the body of a function declaration. Function `f:parse1` parses a single term.

```
(check-equal?
 (f:parse1 '(lambda (x) x y z))
 (f:lambda (list (f:variable 'x))
 (f:seq (f:variable 'x)
 (f:seq (f:variable 'y) (f:variable 'z))))))
```
The body of a function can have one or more definitions, values, or function calls.

```
(check-equal?
 (f:parse1 '(lambda (x) (define x 3) x))
 (f:lambda (list (f:variable 'x))
 (f:seq (f:define (f:variable 'x) (f:number 3)) (f:variable 'x))))
```
Parsing supports function definitions.
Function \texttt{f:parse} can parse a sequence of terms, which corresponds to a Racket program.

\begin{verbatim}
(check-equal? 
 (f:parse '[(define (f x) x)]) 
 (f:define (f:variable 'f) (f:lambda (list (f:variable 'x)) (f:variable 'x))))
\end{verbatim}
\( \lambda_F \) semantics

The incorrect way of implementing define
The incorrect way of implementing

Semantics $t \Downarrow_E \langle E, v \rangle$

\[
\frac{e \Downarrow_E v}{e \Downarrow_E \langle E, v \rangle} \quad \text{(E-exp)}
\]

- Evaluating a `define` extends the environment with a new binding
- Sequencing must thread the environments

\[
\frac{e \Downarrow_E v}{(\text{define } x e) \Downarrow_E \langle E[x \leftarrow v], \text{void} \rangle} \quad \text{(E-def)}
\]

\[
\frac{t_1 \Downarrow_{E_1} \langle E_2, v_1 \rangle \quad t_2 \Downarrow_{E_2} \langle E_3, v_2 \rangle}{t_1; t_2 \Downarrow_{E_1} \langle E_3, v_2 \rangle} \quad \text{(E-seq)}
\]
The Language \( \lambda_F \)

\[ v \Downarrow_E v \quad (E\text{-val}) \]
\[ x \Downarrow_E E(x) \quad (E\text{-var}) \]
\[ \lambda x.t \Downarrow_E (E, \lambda x.t) \quad (E\text{-lam}) \]
\[ e_f \Downarrow_E (E_b, \lambda x.t_b) \quad e_a \Downarrow_E v_a \quad t_b \Downarrow_{E_b[x \mapsto v_a]} v_b \quad (E\text{-app}) \]

\[ (e_f e_a) \Downarrow v_b \]
\[ e \Downarrow_E v \quad (E\text{-exp}) \]
\[ e \Downarrow_E v \]
\[ (\text{define } x e) \Downarrow_E (E[x \mapsto v], \text{void}) \quad (E\text{-def}) \]
\[ t_1 \Downarrow_{E_1} (E_2, v_1) \quad t_2 \Downarrow_{E_2} (E_3, v_2) \quad (E\text{-seq}) \]

\[ t_1; t_2 \Downarrow_{E_1} (E_3, v_2) \]
Why $\lambda_F$ is incorrect?
Evaluating define

Example 1

Consider the following program

```
(define a 20)
(define b (lambda (x) a))
(b 1)
```

What is the output of this program?
Evaluating define

Example 1

Consider the following program

```scheme
(define a 20)
(define b (lambda (x) a))
(b 1)
```

What is the output of this program? The output is: 20

Let us try and evaluate this program with our $\lambda_F$ semantics!
Example 1: step 1

Input

Environment: []
Term: (define a 20)
Example 1: step 1

**Input**

Environment: []
Term: (define a 20)

**Output**

Environment: [(a . 20)]
Value: #<void>

Evaluating
Example 1: step 1

Input

Environment: []
Term: (define a 20)

Output

Environment: [ (a . 20) ]
Value: #<void>

Evaluating

\[
\frac{20 \downtarrow\{} 20 \quad (E\text{-val})}{(define \ a \ 20) \downtarrow\{} \{a : 20\}, \text{void} \quad E\text{-def}}
\]
Example 1: step 2

Input

Environment: [(a . 20)]
Term: (define b (lambda (y) a))
Example 1: step 2

Input

Environment: [ (a . 20) ]
Term: (define b (lambda (y) a))

Output

Environment: [
  (a . 20)
  (b . (closure [(a . 20)] (lambda (y) a)))
]
Value: #<void>
Example 1: step 2

Input

Environment: [ (a . 20) ]
Term: (define b (lambda (y) a))

Output

Environment: [
  (a . 20)
  (b . (closure [(a . 20)] (lambda (y) a)))
]
Value: #<void>

Evaluating

\[
\lambda y.a \Downarrow_{\{a:20\}} \{a:20\}, \lambda y.a \quad \text{(E-lam)}
\]

\[
\text{(define } b \ \lambda y.a) \Downarrow_{\{a:20\}} \{a:20, b: (\{a:20\}, \lambda y.a)\}, \text{void) \quad \text{(E-def)}
\]
Example 1: step 3

Input

Environment: [
  (a . 20)
  (b . (closure [(a . 20)] (lambda (y) a)))
]
Term: (b 1)
Example 1: step 3

Input

Environment: [
  (a . 20)
  (b . (closure [(a . 20)] (lambda (y) a)))
]
Term: (b 1)

Output

Evaluation

Environment: [
  (a . 20)
  (b . (closure [(a . 20)] (lambda (y) a)))
]
Value: 20
Example 1: step 3

Input

Environment: [
(a . 20)
(b . (closure [(a . 20)] (lambda (y) a)))
]
Term: (b 1)

Output

Environment: [
(a . 20)
(b . (closure [(a . 20)] (lambda (y) a)))
]
Value: 20

Evaluation

\[
E(b) = \{a : 20\}, \lambda y.a
\]

\[
b \Downarrow_E \{a : 20\}, \lambda y.a
\]

\[
E-var
\]

\[
F(a) = 20
\]

\[
a \Downarrow_F 20
\]

\[
E-var
\]

\[
E \triangleright 1
\]

\[
E-val
\]

\[
F \triangleright 20
\]

\[
E-app
\]

\[
E = \{a : 20, b : \{a : 20\}, \lambda y.a\}
\]

\[
F = \{a : 20\}[y \mapsto 1] = \{a : 20, y : 1\}
\]
Evaluating define

Example 2
Evaluating define

Example 2

Consider the following program

```
(define b (lambda (x) a))
(define a 20)
(b 1)
```

What is the output of this program?
Evaluating define

Example 2

Consider the following program

```scheme
(define b (lambda (x) a))
(define a 20)
(b 1)
```

What is the output of this program? The output is: 20

Let us try and evaluate this program with our $\lambda_F$ semantics!
Example 2: step 1

Input

Environment: []
Term: (define b (lambda (y) a))
Example 2: step 1

Input

<table>
<thead>
<tr>
<th>Environment: []</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term: (\texttt{define b (lambda (y) a)})</td>
</tr>
</tbody>
</table>

Output

<table>
<thead>
<tr>
<th>Environment:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b . (closure []) (lambda (y) a))</td>
</tr>
<tr>
<td>Value: #&lt;void&gt;</td>
</tr>
</tbody>
</table>

Evaluation
Example 2: step 1

Input

Environment: []
Term: (define b (lambda (y) a))

Output

Environment: [
  (b . (closure [] (lambda (y) a))]
Value: #<void>

Evaluation

\[
\frac{\lambda y.a \downarrow \{\}, \lambda y.a}{\text{E-def}} \quad \frac{\lambda y.a \downarrow \{\}, \lambda y.a}{\text{E-lam}}
\]

\[
\frac{(define b \lambda y.a) \downarrow \{\} (\{b : (\{\}, \lambda y.a)\}, \text{void})}{\text{E-def}}
\]
Example 2: step 2

Input

Environment: 
(b . (closure [] (lambda (y) a))]
Term: (define a 20)
Example 2: step 2

Input

Environment: [
  (b . (closure [] (lambda (y) a))]
]  
Term: (define a 20)

Output

Environment: [
  (a . 20)
  (b . (closure [] (lambda (y) a))]
]  
Value: #<void>

Evaluation
Example 2: step 2

Input

Environment: [
  (b . (closure [] (lambda (y) a)))
]
Term: (define a 20)

Output

Environment: [
  (a . 20)
  (b . (closure [] (lambda (y) a)))
]
Value: #<void>

Evaluation

\[
\begin{align*}
20 \Downarrow \{b:\{\}, \lambda y.a\} & \quad 20 \quad \text{(E-val)} \\
\text{(define a 20)} \Downarrow \{b:\{\}, \lambda y.a\} & \quad \{b : \{\}, \lambda y.a\}, a : 20\}, \text{void} \quad \text{E-def}
\end{align*}
\]
Example 2: step 3

Input

Environment: [
  (a . 20)
  (b . (closure [] (lambda (y) a))]
Term: (b 1)
Example 2: step 3

Input

Environment: [
(a . 20)
(b . (closure []) (lambda (y) a))
]
Term: (b 1)

Output

Environment: [
(a . 20)
(b . (closure []) (lambda (y) a))
]
Value: error! a is undefined

Insight

When creating a closure we copied the existing environment, and therefore any future updates are forgotten.

The semantics of $\lambda_F$ is not enough! We need to introduce a notion of mutation.