Structure of Higher Level Languages

Lecture 12: Function calls with environments

Tiago Cogumbreiro
Lexical Scope
Lexical Scope

- **Binding**: association between a variable and a value.
- **Scope** of a binding: the text where occurrences of this name refer to the binding.
- **Lexical (or static) scope**: the innermost lexically-enclosing construct declaring that variable.

Did you know? In Computer Science, **static analysis** corresponds to analyzing the source code, without running the program.

```scheme
(define (f)
  (define x 10) ; visible: f
  (define y 20) ; visible: f, f.x
  (+ x y)) ; visible: f, f.x, f.y

; visible: f
(define x 1)
; visible: f, x
(define y (+ x 1)) ; visible: f, x, y
(check-equal? (f) 30) ; yields (+ f.x f.y)
```
Dynamic Scope
Lexical scope vs dynamic scope

- Lexical scoping is the default in all popular programming languages.
- With lexical scoping, we can analyze the source code to identify the scope of every variable.
- With lexical scoping, the programmer can reason about each function independently.

What is a dynamic scope?

- Variable scope depends on the calling context.
- Renders all variables global.

Appeared in McCarthy’s Lisp 1.0 as a bug and became a feature in all later implementations, such as MacLisp, Gnu Emacs Lisp.


```
;; NOT VALID RACKET CODE!!!
(define (f) x)
(define (g x) (f))
(check-equal? (g 10) 10)
(define x 20)
(check-equal? (f) 20)
```
Example

What is the result of evaluating \((g)\)?

\[
\text{(define x 1)}
\]
\[
\text{(define (f y) (+ y x))}
\]
\[
\text{(define (g)}
\]
\[
\text{ (define x 2)}
\]
\[
\text{ (define y 3)}
\]
\[
\text{ (f (+ x y)))}
\]
\[
\text{(check-equal? (g) ???)}
\]
Example

What is the result of evaluating \((g)\)?

\[
\begin{align*}
&\text{(define } x \ 1) \\
&(\text{define } (f \ f:y) (+ \ f:y \ x)) \\
&(\text{define } (g) \\
\quad (\text{define } g:x \ 2) \\
\quad (\text{define } g:y \ 3) \\
\quad (f \ (+ \ g:x \ g:y))) \\
&(\text{check-equal? } (g) \ 6)
\end{align*}
\]
Why lexical scoping?

- Lexical scoping is important for using functions-as-values
- To implement our Mini-Racket we will need to implement lexical scoping
Example

What is the result of evaluating \((g)\)?

```
(define (g) x)
(define x 10)
(check-equal? (g) ??)
```
What is the result of evaluating \((g)\)?

```racket
(define (g) x)
; (g) throws an error here
(define x 10)
(check-equal? (g) 10)
```

We can define a function \(g\) that refers to an undefined variable \(x\); variable \(x\) must be defined before calling \(g\).

In Racket, variable definition produces a side-effect, as the definition of \(x\) impacted a previously defined function \(g\). **In Module 5, we implement the semantics of \texttt{define}.**
Accessing variables outside a function

The body of a function can refer to variables defined outside of that function.

It can access variables defined outside of the function, but where exactly?

The function's body can access any variable that is accessible/visible when the function is defined, which is known as the lexical scope.

In the following example, the function returns 3 and not 10, even though variable x is now 10.

; For a given x create a new function that always returns x
(define (getter x) (lambda () x))
(define get3 (getter 3)) ; At creation time, x = 3
(define x 10)
(check-equal? 3 (get3)) ; At call time, x = 10
Function closures
Recall that functions capture variables

Function closure

- A function closure is the return value of function declaration (i.e., the function value)
- **Definition:** A function closure is a pair that stores a function declaration and its lexical environment (i.e., the state of each variable captured by the function declaration)
- The technique of creating a function closure is used by compilers/interpreters to represent function values

Recall that function declaration ≠ function definition:

- Function declaration: `(lambda (variable*) term+)`
- Function definition: `(define (variable+) term+)`
Now we know what a function closure is

1. How to compute the variables in a closure
2. When to set the values of each variable in a closure
It is crucial for us to know how variables are captured in Racket.

Given an expression the set of free variables can be defined inductively:

- When the expression is a variable x, the set of free variables is $\{x\}$.
- When the expression is a $(\lambda(x) \, e)$, the set of free variables is that of expression e minus variable x.
- When the expression is a function application $(e_1 \, e_2)$, the set of free variables is the union of the set of free variables of e_1 and the set of free variables of e_2.

Captured variables: Given an expression $(\lambda(x) \, e)$ a function closure captures the set of free variables of expression $(\lambda(x) \, e)$.
Captured variables examples

Let us compute \(\text{fv} \ (\lambda (x) (+ x y)) \):

1. The free-variables of a \(\lambda \) are the free variables of the body of the function minus parameter \(x \).

\[
\text{fv} \ (\lambda (x) (+ x y)) = \text{fv} \ (+ x y) \setminus \{ x \}
\]

2. We are now in a case of function application, which is the union of the free variables of each of its sub expressions.

\[
\text{fv} \ (+ x y) \setminus \{ x \} = (\text{fv}(+) \cup \text{fv}(x) \cup \text{fv}(y)) \setminus \{ x \}
\]

4. Finally, we reach the case where each argument of free-vars is a variables.

\[
(\text{fv}(+) \cup \text{fv}(x) \cup \text{fv}(y)) \setminus \{ x \} = (+, x, y) \setminus \{ x \} = \{ +, y \}
\]
What creates an environment?

Definition: At any execution point there is an environment, which maps each variable to a value.

What creates environments:
- Each branch inside a `cond` creates an environment
- The body of a function creates an environment

What updates an environment:
- The arguments of a `lambda` are added to the function's body environment
- A `(define x e)` updates the current environment by adding/updating variable `x` and setting it to the value that results from evaluating `e`
Example 1: capture an argument

The lambda is capturing \(x \) as the parameter of \(\text{getter} \) at creation time, so when we call \((\text{getter3})\) we get \((\lambda () 3)\).

\[
\begin{align*}
\text{(define (getter } & x) \\
& \text{(lambda () } \ x)) \ ; \ \text{getter:} x
\end{align*}
\]

\[
\begin{align*}
\text{(define get3 (getter 3)) ; \text{getter:} x = 3; \ (\lambda () \text{getter:} x)
\end{align*}
\]

\[
\begin{align*}
\text{(check-equal? 3 (get3))}
\end{align*}
\]
Example 3: cond starts a new scope

Function getter captured x at the outermost scope (the x captured at function declaration time). Inside the branches of cond we have a new scope, which means that getter is unaffected by the redefinition of x.

```
(define (getter) x); root.x
(define x 10); root.x = 10

; Each branch of the cond creates a new environment
; so it does not affect getter
(cond [#t (define x 20) (check-equal? 10 (getter))] (check-equal? 10 (getter)))
```
Example 3: define shadows parameters

Function `getter` returns variable `x` from the environment of function `f`. When calling `f 20` the last value of variable `x` in the scope of `f` is `10`, due to `(define x 10)`, which overwrites the function's parameter `x=20`.

```
(define (f x)
  (define (getter) x) ; f.x = ?
  (define x 10) ; f.x = 10
  getter)

(define g (f 20))
(check-equal? 10 (g))
```
The λ-calculus is slow
Recall the λ-calculus

Syntax

$$ e ::= v \mid x \mid (e_1 \; e_2) \quad v ::= n \mid \lambda x.e $$

Semantics

$$ v \downarrow v \text{ (E-val)} $$

\begin{align*}
 e_f \downarrow \lambda x.e_b & \quad e_a \downarrow v_a \quad e_b \left[x \mapsto v_a \right] \downarrow v_b \\
 (e_f \; e_a) \downarrow v_b & \quad \text{(E-app)}
\end{align*}
A complexity analysis on function-call

Let us focus consider our implementation of Micro-Racket, and draw our attention to function substitution.

Given a function call \((e_f \ e_a)\)

1. We evaluate \(e_f\) down to a function \((\lambda(x) \ e_b)\)
2. We evaluate \(e_a\) down to a value \(v_a\)
3. We evaluate \(e_b[x \mapsto v_a]\) down to a value \(v_b\)

What is the complexity of the substitution operation \([x \mapsto v_a]\)?
A complexity analysis on function-call

Let us focus consider our implementation of Micro-Racket, and draw our attention to function substitution.

Given a function call \((e_f \ e_a)\)

1. We evaluate \(e_f\) down to a function \((\lambda(x) \ e_b)\)
2. We evaluate \(e_a\) down to a value \(v_a\)
3. We evaluate \(e_b[x \mapsto v_a]\) down to a value \(v_b\)

What is the complexity of the substitution operation \([x \mapsto v_a]\)?

The run-time grows \textbf{linearly} on the size of the expression, as we must replace \(x\) by \(v_a\) in every sub-expression of \(e_b\).
Can we do better?
Can we do better?

Yes, we can sacrifice some space to improve the run-time speed.
Decreasing the run time of substitution

Idea 1: Use a lookup-table to bookkeep the variable bindings
Idea 2: Introduce closures/environments
\(\lambda_E \)-calculus: \(\lambda \)-calculus with environments

We introduce the evaluation of expressions down to values, parameterized by environments:

\[e \downarrow_E v \]

The evaluation takes two arguments: an expression \(e \), and an environment \(E \). The evaluation returns a value \(v \).

Attention!

Homework Assignment 4:
- Evaluation \(e \downarrow_E v \) is implemented as function \((e:\text{eval \ env \ exp}) \) that returns a value \(e:\text{value} \), an environment \(\text{env} \) is a hash, and expression \(\text{exp} \) is an \(e:\text{expression} \).
- functions and structs prefixed with \(s: \) correspond to the \(\lambda_S \) language (Section 1).
- functions and structs prefixed with \(e: \) correspond to the \(\lambda_E \) language (Section 2).
λ_E-calculus: λ-calculus with environments

Syntax

\[
e ::= v \mid x \mid (e_1 \ e_2) \mid \lambda x.e \quad v ::= n \mid (E, \lambda x.e)
\]

Semantics

\[
\begin{align*}
v & \Downarrow_E v \quad \text{(E-val)} \\
x & \Downarrow_E E(x) \quad \text{(E-var)} \\
\lambda x.e & \Downarrow_E (E, \lambda x.e) \quad \text{(E-clos)} \\
\end{align*}
\]

\[
\begin{align*}
e_f & \Downarrow_E (E_b, \lambda x.e_b) \quad e_a & \Downarrow_E v_a \quad e_b & \Downarrow_E E_b [x \mapsto v_a] \quad v_b \quad \text{(E-app)} \\
\end{align*}
\]
Overview of λ_E-calculus

Notable differences

1. Declaring a function is an **expression** that yields a function value (a closure), which packs the environment at creation-time with the original function declaration.

2. Calling a function unpacks the environment E_b from the closure and extends environment E_b with a binding of parameter x and the value v_a being passed.

Environments

- An environment E maps variable bindings to values.

Constructors

- Notation \emptyset represents the empty environment (with zero variable bindings).
- Notation $E[x \mapsto v]$ extends an environment with a new binding (overwriting any previous binding of variable x).

Accessors

- Notation $E(x) = v$ looks up value v of variable x in environment E.
Church's encoding
Chuch's encoding

- Alonzo Church created the λ-calculus
- Church's Encoding is a treasure trove of λ-calculus expressions: it shows how natural numbers can be encoded
- Let us go through Church's encoding of booleans
- Examples taken from Colin Kemp's PhD thesis (page 17)
Why? Because you will be needing test-cases.

```scheme
(require rackunit)
(define ns (make-base-namespace))
(define (run-bool b) (((eval b ns) #t) #f))

; True
(define TRUE '(lambda (a) (lambda (b) a)))
(define FALSE '(lambda (a) (lambda (b) b)))
(define (OR a b) (list (list a TRUE) b))
(define (AND a b) (list (list a b) FALSE))
(define (NOT a) (list (list a FALSE) TRUE))
(define (EQ a b) (list (list a b) (NOT b)))

; Test
(check-equal? (run-bool (EQ TRUE (OR (AND FALSE TRUE) TRUE)))
(equal? #t (or (and #f #t) #t)))
```
Implementing the new AST
Implementing the new AST

Values

\[v ::= n \mid (E, \lambda x. e) \]

Racket implementation

```scheme
(define (e:value? v) (or (e:number? v) (e:closure? v)))
(struct e:number (value) #:transparent)
(struct e:closure (env decl) #:transparent)
```
Implementing the new AST

Expressions

\[e ::= v \mid x \mid (e_1 \ e_2) \mid \lambda x. e \]

Racket implementation

```racket
(define (e:expression? e) (or (e:value? e) (e:variable? e) (e:apply? e) (e:lambda? e)))
(struct e:lambda (params body) #:transparent)
(struct e:variable (name) #:transparent)
(struct e:apply (func args) #:transparent)
```
How can we represent environments in Racket?
Hash-tables

TL;DR: A data-structure that stores pairs of key-value entries. There is a lookup operation that given a key retrieves the value associated with that key. Keys are unique in a hash-table, so inserting an entry with the same key, replaces the old value by the new value.

- Hash-tables represent a (partial) injective function.
- Hash-tables were covered in CS310.
- Hash-tables are also known as maps, and dictionaries. We use the term hash-table, because that is how they are known in Racket.
Hash-tables in Racket

Constructors

1. Function \((\text{hash } k_1 \ v_1 \ \ldots \ k_n \ v_n) \) a hash-table with the given key-value entries. Passing zero arguments, \((\text{hash})\), creates an empty hash-table.
2. Function \((\text{hash-set } h \ k \ v) \) copies hash-table \(h \) and adds/replaces the entry \(k \ v \) in the new hash-table.

Accessors

- Function \((\text{hash? } h) \) returns \#t if \(h \) is a hash-table, otherwise it returns \#f
- Function \((\text{hash-count } h) \) returns the number of entries stored in hash-table \(h \)
- Function \((\text{hash-has-key? } h \ k) \) returns \#t if the key is in the hash-table, otherwise it returns \#f
- Function \((\text{hash-ref } h \ k) \) returns the value associated with key \(k \), otherwise aborts
Hash-table example

(define h (hash)) ; creates an empty hash-table
(check-equal? 0 (hash-count h)) ; we can use hash-count to count how many entries
(check-true (hash? h)) ; unsurprisingly the predicate hash? is available

(define h1 (hash-set h "foo" 20)) ; creates a new hash-table where "foo" is bound to 20
(check-equal? (hash "foo" 20) h1) ; (hash-set (hash) "foo" 20) = (hash "foo" 20)

(define h2 (hash-set h1 "foo" 30)) ; in h2 "foo" is the key, and 30 the value
(check-equal? (hash "foo" 30) h2) ; ensures that hash-ref retrieves the value of "foo"
(check-equal? 30 (hash-ref h2 "foo")) ; h1 remains the same
(check-equal? (hash "foo" 20) h1)
Encoding environments with hash-tables

- How can we encode an empty environment \emptyset:

Encoding environments with hash-tables

- How can we encode an empty environment \emptyset: (hash)
- How can we encode a lookup $E(x)$:
Encoding environments with hash-tables

- How can we encode an empty environment \(\emptyset \): (hash)
- How can we encode a lookup \(E(x) \): (hash-ref E x)
- How can we encode environment extension \(E[x \mapsto v] \):
Encoding environments with hash-tables

- How can we encode an empty environment \emptyset: (hash)
- How can we encode a lookup $E(x)$: (hash-ref E x)
- How can we encode environment extension $E[x \mapsto v]$: (hash-set E x v)
Test-cases
Test-cases

Function (check-e:eval? env exp val) is given in the template to help you test effectively your code.

- The use of check-e:eval is optional. You are encouraged to play around with e:eval directly.

1. The first parameter is an S-expression that represents an environment. The S-expression must be a list of pairs representing each variable binding. The keys must be symbols, the values must be serialized λ_E values

 - The empty environment: []
 - An environment where x is bound to 1: [(x . 1)]
 - An environment where x is bound to 1 and y is bound to 2: [(x . 1) (y . 2)]

2. The second parameter is an S-expression that represents the a valid λ_E expression

3. The third parameter is an S-expression that represents a valid λ_E value
Serialized expressions in λ_E

Each line represents a quoted expression as a parameter of function \texttt{e:parse-ast}. For instance, \texttt{(e:parse-ast '(x y))} should return \texttt{(e:apply (e:variable 'x) (list (e:variable 'y)))}.

```
1; (e:number 1)
x; (e:variable 'x)
(closure [(y . 20)] (lambda (x) x))
; (e:closure
;  (hash (e:variable 'y) (e:number 20))
;  (e:lambda (list (e:variable 'x)) (list (r:variable 'x))))
(lambda (x) x); (e:lambda (list (e:variable 'x)) (list (e:variable 'x)))
(x y); (e:apply (e:variable 'x) (list (e:variable 'y)))
```
Test cases

; x is bound to 1, so x evaluates to 1
(check-e:eval? '[(x . 1)] 'x 1)

; 20 evaluates to 20
(check-e:eval? '[(x . 2)] 20 20)

; a function declaration evaluates to a closure
(check-e:eval? '[] '(lambda (x) x) '(closure [] (lambda (x) x)))

; a function declaration evaluates to a closure; notice the environment change
(check-e:eval? '[(y . 3)] '(lambda (x) x) '(closure [(y . 3)] (lambda (x) x)))

; because we use an S-expression we can use brackets, curly braces, or parenthesis
(check-e:eval? '{(y . 3)} '(lambda (x) x) '(closure [(y . 3)] (lambda (x) x)))

; evaluate function application
(check-e:eval? '{} '((lambda (x) x) 3) 3)

; evaluate function application that returns a closure
(check-e:eval? '{} '((lambda (x) (lambda (y) x)) 3) '(closure {[x . 3]} (lambda (y) x)))