Today we learn

- Decidability results
- Halting problem
- Emptiness for TM is undecidable

Section 4.2, 5.1
Decidability and Recognizability

Understanding the limits of decision problems

Implementation: algorithm that answers a decision problem, that is algorithm says YES whenever decision problem says YES.

- **Decidability**: there is an implementation that terminates for all inputs
- **Undecidability**: any implementation will loop for some inputs
- **Unrecognizability**: no implementation is possible
Decidability and Recognizability

Understanding the limits of decision problems

Implementation: algorithm that answers a decision problem, that is algorithm says YES whenever decision problem says YES.

- **Decidability**: there is an implementation that terminates for all inputs
- **Undecidability**: any implementation will loop for some inputs
- **Unrecognizability**: no implementation is possible

Technically we are learning

- Proving the correctness of algorithms
- Proving the termination of algorithms
- Proving non-trivial results (combining multiple theorems)
Corollary 4.23

\overline{A}_{TM} is unrecognizable
Corollary 4.23: $\overline{A_{TM}}$ is unrecognizable

Lemma co_a_tm_not_recognizable:
~ Recognizable (compl A_tm).

Done in class...
Corollary 4.18

Some languages are unrecognizable
Corollary 4.18 Some languages are unrecognizable

Proof.
Corollary 4.18 Some languages are unrecognizable

Proof. An example of an unrecognizable language is: $\overline{A_{TM}}$
If L is decidable, then \overline{L} is decidable
On pen-and-paper proofs

Theorem 4.22

A language is decidable iff it is Turing-recognizable and co-Turing-recognizable.

In other words, a language is decidable exactly when both it and its complement are Turing-recognizable.

Proof We have two directions to prove. First, if A is decidable, we can easily see that both A and its complement \overline{A} are Turing-recognizable. Any decidable language is Turing-recognizable, and the complement of a decidable language also is decidable.
First, if A is decidable, we can easily see that both A and its complement \overline{A} are Turing-recognizable.

- A is decidable, then A is recognizable by definition.
- A is decidable, then \overline{A} is recognizable? **Why?**

Any decidable language is Turing-recognizable,

- Yes, by definition.

and the complement of a decidable language also is decidable.

- **Why?**
If \(L \) is decidable, then \(\overline{L} \) is decidable

1. Let \(M \) decide \(L \).
2. Create a Turing machine that negates the result of \(M \).

Definition \(\text{inv} \ M \ w \ := \)
\[
\text{mlet } b \leftarrow \text{Call } m \ w \ \text{in } \text{halt_with} \ (\text{negb } b).
\]

3. Show that \(\text{inv} \ M \) recognizes
 \[\text{Inv}(L) = \{ w \mid M \text{ rejects } w \} \]
4. Show that the result of \(\text{inv} \ M \) for any word \(w \) is the
 negation of running \(M \) with \(m \), where negation of
 accept is reject, reject is accept, and loop is loop.
5. The goal is to show that \(\text{inv} \ M \) recognizes \(\overline{L} \) and is
 decidable.

What about loops? If \(M \) loops on some word \(w \),
then \(\text{inv} \ M \) would also
loop. How is does \(\text{inv} \ M \) recognize \(\overline{L} \)?
If L is decidable, then \overline{L} is decidable

1. Let M decide L.
2. Create a Turing machine that negates the result of M.

Definition $\text{inv } M \ w := \ m\text{let } b \leftarrow \text{Call } m \ w \text{ in } \text{halt_with } (\text{negb } b)$.

3. Show that $\text{inv } M$ recognizes $\text{Inv}(L) = \{ w \mid M \text{ rejects } w \}$
4. Show that the result of $\text{inv } M$ for any word w is the negation of running M with m, where negation of accept is reject, reject is accept, and loop is loop.

5. The goal is to show that $\text{inv } M$ recognizes \overline{L} and is decidable.

What about loops? If M loops on some word w, then $\text{inv } M$ would also loop. How does $\text{inv } M$ recognize \overline{L}?

Recall that L is decidable, so M will never loop.
If L is decidable, then \overline{L} is decidable

Continuation...

Part 1. Show that $\text{inv } M$ recognizes \overline{L}

We must show that: If M decides L and $\text{inv } M$ recognizes $\text{Inv}(L)$, then $\text{inv } M$ is decidable.

It is enough to show that if M decides L, then $\text{Inv}(L) = \overline{L}$.

Show proof inv_compl_equiv.

Part 2. Show that $\text{inv } M$ is a decider

Show proof decides_to_compl.
Chapter 5: Undecidability
HALT_T^M: Termination of TM

Will this TM halt given this input?

(The Halting problem)
HALT\textsubscript{TM} is undecidable

Theorem 5.1: **HALT_TM** loops for some input

Set-based encoding

\[\text{HALT}_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \} \]

Function-based encoding

\[
\begin{align*}
\text{def } \text{HALT_TM}(M, w): \\
\text{return } M \text{ halts on } w
\end{align*}
\]

Proof

Proof idea: Given Turing machine acc, show that acc decides \(A_{TM} \).

\[
\begin{align*}
\text{def } \text{acc}(M, w): \\
\text{if } \text{HALT_TM}(M, w): \\
\text{return } M(w) \\
\text{else:} \\
\text{return } \text{False}
\end{align*}
\]
Theorem 5.1: Proof overview

Apply Thm 4.11 to (H) "acc decides A_{TM}" and reach a contradiction. To prove H:

1. Show that acc recognizes Acc_D
2. Show that $\text{Acc}_D = A_{TM}$ (why do we need this step?)
3. Show that acc is decidable
HALT_{TM} is undecidable

Part 1. Show that acc recognizes Acc_D

1. Show that if $\text{acc} \ w$ accepts, then $p \in \text{Acc}_D$, ie, D accepts $\langle M, p \rangle$ and M accepts w.

\begin{verbatim}
1 Definition acc p :=
2 let (M, w) := decode_machine_input p in
3 mlet b ← Call D p in
4 if b then Call M w else REJECT.
\end{verbatim}
HALT\textsubscript{TM} is undecidable

Part 1. Show that acc recognizes \textbf{Acc}_D

1. Show that if acc \(w \) accepts, then \(p \in \textbf{Acc}_D \), ie,
\(D \) accepts \(\langle M, p \rangle \) and \(M \) accepts \(w \).
 - Case analysis on \textbf{Call D} \(<M, w> \)
HALT_{TM} is undecidable

Part 1. Show that acc recognizes Acc_D

1. Show that if acc w accepts, then $p \in \text{Acc}_D$, ie, D accepts $\langle M, p \rangle$ and M accepts w.

 - Case analysis on Call D $\langle M, w \rangle$
 1. If D accepts $\langle M, w \rangle$, then we get that M accepts w
HALTTM is undecidable

Part 1. Show that acc recognizes Acc\textsubscript{D}

1. Show that if acc \(w \) accepts, then \(p \in \text{Acc}_D \), ie, \(D \) accepts \(\langle M, p \rangle \) and \(M \) accepts \(w \).
 - Case analysis on Call \(D \) \(\langle M, w \rangle \)
 1. \(D \) accepts \(\langle M, w \rangle \), then we get that \(M \) accepts \(w \)
 2. \(D \) rejects \(\langle M, w \rangle \), then contradiction

2. Show that if \(w \in \text{Acc}_D \), then acc \(w \) accepts.
HALT\textsubscript{TM} is undecidable

Part 1. Show that acc recognizes Acc_D

1. Show that if acc w accepts, then $p \in \text{Acc}_D$, i.e., D accepts $\langle M, p \rangle$ and M accepts w.
 - Case analysis on Call $D <M, w>$
 1. D accepts $<M, w>$, then we get that M accepts w
 2. D rejects $<M, w>$, then contradiction

2. Show that if $w \in \text{Acc}_D$, then acc w accepts.
 - Given D accepts $\langle M, w \rangle$ and M accepts w, show that acc w accepts
HALT$_{TM}$ is undecidable

Part 1. Show that acc recognizes Acc$_D$

1. Show that if acc w accepts, then $p \in$ Acc$_D$, i.e., D accepts $\langle M, p \rangle$ and M accepts w.
 - Case analysis on Call D $\langle M, w \rangle$
 1. D accepts $\langle M, w \rangle$, then we get that M accepts w
 2. D rejects $\langle M, w \rangle$, then contradiction

2. Show that if $w \in$ Acc$_D$, then acc w accepts.
 - Given D accepts $\langle M, w \rangle$ and M accepts w, show that acc w accepts
 - Rewrite each in code, get accept
HALT_{TM} is undecidable

Part 2. Show that $\text{Acc}_D = A_{TM}$

1. Show that if $\langle M, w \rangle \in \text{Acc}_D$, then $\langle M, p \rangle \in A_{TM}$
$HALT_{TM}$ is undecidable

Part 2. Show that $\text{Acc}_D = A_{TM}$

1. Show that if $\langle M, w \rangle \in \text{Acc}_D$, then $\langle M, p \rangle \in A_{TM}$
 - We have M accepts w from $\langle M, p \rangle \in \text{Acc}_D$
HALT_{TM} is undecidable

Part 2. Show that $\text{Acc}_D = A_{TM}$

1. Show that if $\langle M, w \rangle \in \text{Acc}_D$, then $\langle M, p \rangle \in A_{TM}$
 ○ We have M accepts w from $\langle M, p \rangle \in \text{Acc}_D$

2. Show that if (i) $\langle M, w \rangle \in A_{TM}$, then $\langle M, w \rangle \in \text{Acc}_D$, ie
HALT_{TM} is undecidable

Part 2. Show that \(\text{Acc}_D = A_{TM} \)

1. Show that if \(\langle M, w \rangle \in \text{Acc}_D \), then \(\langle M, p \rangle \in A_{TM} \)
 - We have \(M \) accepts \(w \) from \(\langle M, p \rangle \in \text{Acc}_D \)
2. Show that if (i) \(\langle M, w \rangle \in A_{TM} \), then \(\langle M, w \rangle \in \text{Acc}_D \), ie
 \(M \) accepts \(w \) and \(D \) accepts \(\langle M, w \rangle \)
HALT_{TM} is undecidable

Part 2. Show that $\text{Acc}_D = A_{TM}$

1. Show that if $\langle M, w \rangle \in \text{Acc}_D$, then $\langle M, p \rangle \in A_{TM}$
 - We have M accepts w from $\langle M, p \rangle \in \text{Acc}_D$

2. Show that if (i) $\langle M, w \rangle \in A_{TM}$, then $\langle M, w \rangle \in \text{Acc}_D$, ie M accepts w and D accepts $\langle M, w \rangle$
 - We have that M accepts w from (i)
HALT_{TM} is undecidable

Part 2. Show that $\text{Acc}_D = A_{TM}$

1. Show that if $\langle M, w \rangle \in \text{Acc}_D$, then $\langle M, p \rangle \in A_{TM}$
 - We have M accepts w from $\langle M, p \rangle \in \text{Acc}_D$

2. Show that if (i) $\langle M, w \rangle \in A_{TM}$, then $\langle M, w \rangle \in \text{Acc}_D$, ie M accepts w and D accepts $\langle M, w \rangle$
 - We have that M accepts w from (i)
 - We have that D accepts $\langle M, w \rangle$ since M halts.
Part 3. Show that acc is decidable

Proof by contradiction. Assume acc loops with $p = \langle M, w \rangle$ and reach a contradiction.
HALT_{TM} is undecidable

Part 3. Show that acc is decidable

Proof by contradiction. Assume acc loops with $p = \langle M, w \rangle$ and reach a contradiction. If acc loops with p, then D accepts p and M loops with w, or D loops with p^\dagger.
HALT_TM is undecidable

Part 3. Show that acc is decidable

Proof by contradiction. Assume acc loops with $p = \langle M, w \rangle$ and reach a contradiction. If acc loops with p, then D accepts p and M loops with w, or D loops with p^\dagger

- If D accepts p, then M halts with w, which contradicts with M loops with w
HALT\textsubscript{TM} is undecidable

Part 3. Show that acc is decidable

Proof by contradiction. Assume acc loops with \(p = \langle M, w \rangle \) and reach a contradiction. If acc loops with \(p \), then \(D \) accepts \(p \) and \(M \) loops with \(w \), or \(D \) loops with \(p \)^†

- If \(D \) accepts \(p \), then \(M \) halts with \(w \), which contradicts with \(M \) loops with \(w \)
- If \(D \) loops with \(p \), we reach a contradiction because \(D \) is a decider

^†: Why?
E_{TM}: Emptiness of TM

(Is the language of this TM empty?)
Theorem 5.2: E_{TM} is undecidable

Set-based

$$E_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset\}$$

Function-based

```python
def E_TM(M):
    return L(M) == {}
```

Proof overview: show that acc decides A_{TM}

```python
def build_M1(M, w):
    def M1(x):
        if x == w:
            return M accepts w
        else:
            return False
    return M1
def acc(M, w):
    b = E_TM(build_M1(M, w))
    return not b
```

- $w \in L(M1) \iff \langle M1 \rangle \notin E_{TM}$
- $w \in L(M1) \iff w \in L(M)$
Theorem 5.2: E_{TM} is undecidable

Proof follows by contradiction.
Theorem 5.2: E_{TM} is undecidable

Proof follows by contradiction.

1. Show that E_{TM} decidable implies A_{TM} decidable.
Theorem 5.2: E_{TM} is undecidable

Proof follows by contradiction.

1. Show that E_{TM} decidable implies A_{TM} decidable.
2. Reach contradiction by applying Thm 4.11 to (1)
Theorem 5.2: E_{TM} is undecidable

Proof follows by contradiction.

1. Show that E_{TM} decidable implies A_{TM} decidable.
2. Reach contradiction by applying Thm 4.11 to (1)

Goal: E_{TM} decidable implies A_{TM} decidable
Theorem 5.2: E_{TM} is undecidable

Proof follows by contradiction.

1. Show that E_{TM} decidable implies A_{TM} decidable.
2. Reach contradiction by applying Thm 4.11 to (1)

Goal: E_{TM} decidable implies A_{TM} decidable

Let D decide E_{TM}.

1. Show that acc recognizes A_{TM}
Theorem 5.2: E_{TM} is undecidable

Proof follows by contradiction.

1. Show that E_{TM} decidable implies A_{TM} decidable.
2. Reach contradiction by applying Thm 4.11 to (1)

Goal: E_{TM} decidable implies A_{TM} decidable

Let D decide E_{TM}.

1. Show that A_{TM} decidable implies \overline{A}_{TM} decidable.
 1. Show that $A_{TM} = \text{Acc}_D$ where $\text{Acc}_D = \{ \langle M, w \rangle \mid L(M_1, w) \neq \emptyset \}$ (e_tm_a_tm_spec)
Theorem 5.2: E_{TM} is undecidable

Proof follows by contradiction.

1. Show that E_{TM} decidable implies A_{TM} decidable.
2. Reach contradiction by applying Thm 4.11 to (1)

Goal: E_{TM} decidable implies A_{TM} decidable

Let D decide E_{TM}.

1. Show that acc recognizes A_{TM}
 1. Show that $A_{TM} = Acc_D$ where $Acc_D = \{ \langle M, w \rangle \mid L(M_{1,M,w}) \neq \emptyset \}$ (e_tm_a_tm_spec)
 2. Show that acc recognizes Acc_D (E_tm_A_tm_recognizes)
Theorem 5.2: E_{TM} is undecidable

Proof follows by contradiction.

1. Show that E_{TM} decidable implies A_{TM} decidable.
2. Reach contradiction by applying Thm 4.11 to (1)

Goal: E_{TM} decidable implies A_{TM} decidable

Let D decide E_{TM}.

1. Show that acc recognizes A_{TM}
 1. Show that $A_{TM} = Acc_D$ where $Acc_D = \{ \langle M, w \rangle \mid L(M_{1_M,w}) \neq \emptyset \}$ (e_tm_a_tm_spec)
 2. Show that acc recognizes Acc_D (E_tm_A_tm_recognizes)
2. Show that acc is a decider (decider_E_tm_A_tm)
Theorem 5.2: E_{TM} is undecidable

Part 1.1: Show that $A_{TM} = Acc_D$ where $Acc_D = \{ \langle M, w \rangle \mid L(M_1^{M, w}) \neq \emptyset \}$

Theorem not_empty_to_accept

1. Show that: If $L(M_1^{M, w}) \neq \emptyset$, then M accepts w.
Theorem 5.2: E_{TM} is undecidable

Part 1.1: Show that $A_{TM} = Acc_D$ where $Acc_D = \{ \langle M, w \rangle \mid L(M, w) \neq \emptyset \}$

Theorem not_empty_to_accept

1. Show that: If $L(M, w) \neq \emptyset$, then M accepts w.
 - Case analysis on running M with input w:
Theorem 5.2: E_{TM} is undecidable

Part 1.1: Show that $A_{TM} = Acc_D$ where $Acc_D = \{ \langle M, w \rangle \mid L(M_1, w) \neq \emptyset \}$

Theorem not_empty_to_accept

1. Show that: If $L(M_1, w) \neq \emptyset$, then M accepts w.
 - Case analysis on running M with input w:
 - Case (a) M accepts w: use assumption to conclude
Theorem 5.2: E_{TM} is undecidable

Part 1.1: Show that $A_{TM} = Acc_{D}$ where $Acc_{D} = \{ \langle M, w \rangle \mid L(M_{1}, w) \neq \emptyset \}$

Theorem not_empty_to_accept

1. Show that: If $L(M_{1}, w) \neq \emptyset$, then M accepts w.
 - Case analysis on running M with input w:
 - Case (a) M accepts w: use assumption to conclude
 - Case (b) M rejects w: we can conclude that $L(M_{1}, w) = \emptyset$ from (b)
Theorem 5.2: E_{TM} is undecidable

Part 1.1: Show that $A_{TM} = Acc_D$ where $Acc_D = \{ \langle M, w \rangle \mid L(M_1, w) \neq \emptyset \}$

Theorem not_empty_to_accept

1. Show that: If $L(M_1, w) \neq \emptyset$, then M accepts w.

 - Case analysis on running M with input w:

 - Case (a) M accepts w: use assumption to conclude
 - Case (b) M rejects w: we can conclude that $L(M_1, w) = \emptyset$ from (b)
 - Case (c) M loops with w: same as above
Theorem 5.2: E_{TM} is undecidable

Part 1.1: Show that $A_{TM} = \text{Acc}_D$ where $\text{Acc}_D = \{\langle M, w \rangle \mid L(M_{1,M,w}) \neq \emptyset \}$

Theorem accept_to_not_empty

2. Show that: If M accepts w, then $L(M_{1,M,w}) \neq \emptyset$.
Theorem 5.2: E_{TM} is undecidable

Part 1.1: Show that $A_{TM} = Acc_D$ where $Acc_D = \{ \langle M, w \rangle \mid L(M1_M,w) \neq \emptyset \}$

Theorem accept_to_not_empty

2. Show that: If M accepts w, then $L(M1_M,w) \neq \emptyset$.
 1. Proof follows by contradiction: assume $L(M1_M,w) = \emptyset$.

CS420 Undecidability and unrecognizability Lecture 23 Tiago Cogumbreiro
Theorem 5.2: E_{TM} is undecidable

Part 1.1: Show that $A_{TM} = Acc_D$ where $Acc_D = \{\langle M, w \rangle \mid L(M_{1M,w}) \neq \emptyset \}$

Theorem accept_to_not_empty

2. Show that: If M accepts w, then $L(M_{1M,w}) \neq \emptyset$.
 1. Proof follows by contradiction: assume $L(M_{1M,w}) = \emptyset$.
 2. We know that $M_{1M,w}$ does not accept w from (2.1)
Theorem 5.2: E_{TM} is undecidable

Part 1.1: Show that $A_{TM} = Acc_D$ where $Acc_D = \{\langle M, w \rangle \mid L(M_{1M}, w) \neq \emptyset \}$

Theorem accept_to_not_empty

2. Show that: If M accepts w, then $L(M_{1M}, w) \neq \emptyset$.
 1. Proof follows by contradiction: assume $L(M_{1M}, w) = \emptyset$.
 2. We know that M_{1M},w does not accept w from (2.1)
 3. To contradict 2.2, we show that M_{1M},w accepts w
Theorem 5.2: E_{TM} is undecidable

Part 1.1: Show that $A_{TM} = Acc_D$ where $Acc_D = \{\langle M, w \rangle \mid L(M_1, w) \neq \emptyset\}$

Theorem accept_to_not_empty

2. Show that: If M accepts w, then $L(M_1, w) \neq \emptyset$.
 1. Proof follows by contradiction: assume $L(M_1, w) = \emptyset$.
 2. We know that M_1, w does not accept w from (2.1)
 3. To contradict 2.2, we show that M_1, w accepts w
 1. Since $x = w$ and (2.1), then M_1, w accepts w