CS420

Introduction to the Theory of Computation

Lecture 23: Undecidability and unrecognizability

Tiago Cogumbreiro

Today we learn

- Decidability results
- Halting problem
- Emptiness for TM is undecidable

Section 4.2, 5.1

Decidability and Recognizability

Understanding the limits of decision problems

Implementation: algorithm that answers a decision problem, that is algorithm says YES whenever decision problem says YES.

- Decidability: there is an implementation that terminates for all inputs
- **Undecidability:** any implementation will loop for some inputs
- Unrecognizability: no implementation is possible

Decidability and Recognizability

Understanding the limits of decision problems

Implementation: algorithm that answers a decision problem, that is algorithm says YES whenever decision problem says YES.

- Decidability: there is an implementation that terminates for all inputs
- **Undecidability:** any implementation will loop for some inputs
- Unrecognizability: no implementation is possible

Technically we are learning

- Proving the correctness of algorithms
- Proving the termination of algorithms
- Proving non-trivial results (combining multiple theorems)

Corollary 4.23

 \overline{A}_{TM} is unrecognizable

Corollary 4.23: \overline{A}_{TM} is unrecognizable

Done in class...

Corollary 4.18 Some languages are unrecognizable

Proof.

Proof. An example of an unrecognizable language is: A_{TM}

If $oldsymbol{L}$ is decidable, then $oldsymbol{\overline{L}}$ is decidable

On pen-and-paper proofs

THEOREM 4.22

A language is decidable iff it is Turing-recognizable and co-Turing-recognizable.

In other words, a language is decidable exactly when both it and its complement are Turing-recognizable.

PROOF We have two directions to prove. First, if A is decidable, we can easily see that both A and its complement \overline{A} are Turing-recognizable. Any decidable language is Turing-recognizable, and the complement of a decidable language also is decidable.

Proof of Theorem 4.22 Taken from the book.

First, if A is decidable, we can easily see that both A and its complement A are Turing-recognizable.

- ullet A is decidable, then A is recognizable by definition.
- A is decidable, then \overline{A} is recognizable? Why?
- Any decidable language is Turing-recognizable,
 - Yes, by definition.
- and the complement of a decidable language also is decidable.
 - Why?

If $oldsymbol{L}$ is decidable, then $oldsymbol{\overline{L}}$ is decidable

- 1. Let M decide L.
- 2. Create a Turing machine that negates the result of M.

```
Definition inv M w :=
  mlet b ← Call m w in halt_with (negb b).
```

- 3. Show that inv M recognizes $Inv(L) = \{w \mid M \text{ rejects } w\}$
- 4. Show that the result of inv M for any word w is the negation of running M with m, where negation of accept is reject, reject is accept, and loop is loop.
- 5. The goal is to show that inv M recognizes L and is decidable.

What about loops? If M loops on some word w, then inv M would also loop. How is does inv M recognize \overline{L} ?

If $oldsymbol{L}$ is decidable, then $\overline{oldsymbol{L}}$ is decidable

- 1. Let M decide L.
- 2. Create a Turing machine that negates the result of M.

```
Definition inv M w :=
  mlet b ← Call m w in halt_with (negb b).
```

- 3. Show that inv M recognizes $Inv(L) = \{w \mid M \text{ rejects } w\}$
- 4. Show that the result of inv M for any word w is the negation of running M with m, where negation of accept is reject, reject is accept, and loop is loop.
- 5. The goal is to show that inv M recognizes L and is decidable.

What about loops? If M loops on some word w, then inv M would also loop. How is does inv M recognize \overline{L} ?

Recall that L is decidable, so M will never loop.

If $oldsymbol{L}$ is decidable, then $oldsymbol{\overline{L}}$ is decidable

Continuation...

Part 1. Show that inv M recognizes \overline{L}

We must show that: If M decides L and inv M recognizes $\mathrm{Inv}(L)$, then inv M is decidable. It is enough to show that if M decides L, then $\mathrm{Inv}(L)=\overline{L}$. Show proof inv_compl_equiv.

Part 2. Show that inv Mis a decider

Show proof decides_to_compl.

Chapter 5: Undecidability

$HALT_{\mathsf{TM}}$: Termination of TM

Will this TM halt given this input?

(The Halting problem)

Theorem 5.1: HALT_TM loops for some input

Set-based encoding

Function-based encoding

```
HALT_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}
```

```
def HALT_TM(M,w):
   return M halts on w
```

Proof

Proof idea: Given Turing machine acc, show that acc decides A_{TM} .

```
def acc(M, w):
   if HALT_TM(M,w):
     return M(w)
   else:
     return False
```


Theorem 5.1: Proof overview

```
Definition acc D p :=
  let (M, w) := decode_machine_input p in
  mlet b ← Call D p in (* HALT_TM(M, w) *)
  if b then Call M w else REJECT.
```

```
Definition acc_lang D p :=
  let (M, w) := decode_machine_input p in
  run D p = Accept /\ run M w = Accept.
```

 $\mathrm{Acc}_D = \{ \langle M, w
angle \mid D ext{ accepts } \langle M, w
angle \wedge M ext{ accepts } w \}$

Apply Thm 4.11 to (H) "acc decides A_{TM} " and reach a contradiction. To prove H:

- 1. Show that acc recognizes Acc_D
- 2. Show that $Acc_D = A_{TM}$ (why do we need this step?)
- 3. Show that acc is decidable

Part 1. Show that acc recognizes Acc_D

```
1 Definition acc p :=
2 let (M, w) := decode_machine_input p in
3 mlet b ← Call D p in
4 if b then Call M w else REJECT.
```

1. Show that if acc $\,$ w accepts, then $p \in \mathrm{Acc}_D$, ie, $\,$ $\,$ $\,$ $\,$ $\,$ $\,$ accepts $\,$ $\langle M,p \rangle$ and $\,$ $\,$ accepts $\,$ w.


```
1 Definition acc p :=
2 let (M, w) := decode_machine_input p in
3 mlet b ← Call D p in
4 if b then Call M w else REJECT.
```

- 1. Show that if acc $\,$ w accepts, then $p \in \mathrm{Acc}_D$, ie, $\,$ $\,$ $\,$ $\,$ $\,$ accepts $\,$ $\langle M,p \rangle$ and $\,$ $\,$ accepts $\,$ $\,$ $\,$ $\,$
 - Case analysis on Call D <M,w>


```
1 Definition acc p :=
2 let (M, w) := decode_machine_input p in
3 mlet b ← Call D p in
4 if b then Call M w else REJECT.
```

- 1. Show that if acc $\,$ w accepts, then $p \in \mathrm{Acc}_D$, ie, $\,$ $\,$ $\,$ $\,$ $\,$ accepts $\,$ $\langle M,p \rangle$ and $\,$ $\,$ accepts $\,$ $\,$ $\,$ $\,$
 - Case analysis on Call D <M,w>
 1. D accepts <M,w>, then we get that M accepts w


```
1 Definition acc p :=
2 let (M, w) := decode_machine_input p in
3 mlet b ← Call D p in
4 if b then Call M w else REJECT.
```

- 1. Show that if acc $\,$ w accepts, then $p \in \mathrm{Acc}_D$, ie, $\,$ $\,$ $\,$ $\,$ $\,$ accepts $\,$ $\langle M,p \rangle$ and $\,$ $\,$ accepts $\,$ $\,$ $\,$ $\,$
 - \circ Case analysis on Call D <M,w> 1. D accepts <M,w>, then we get that M
 - accepts w
 - 2. D rejects <M, w>, then contradiction
- 2. Show that if $w \in \mathrm{Acc}_D$, then acc waccepts.


```
1 Definition acc p :=
2 let (M, w) := decode_machine_input p in
3 mlet b ← Call D p in
4 if b then Call M w else REJECT.
```

- 1. Show that if acc $\,$ w accepts, then $p \in \mathrm{Acc}_D$, ie, $\,$ $\,$ $\,$ $\,$ $\,$ accepts $\,$ $\langle M,p \rangle$ and $\,$ $\,$ accepts $\,$ $\,$ $\,$ $\,$
 - \circ Case analysis on Call D <M,w> $\hbox{1. D accepts <M,w>, then we get that } M$ accepts w
 - 2. D rejects <M, w>, then contradiction
- 2. Show that if $w \in \mathrm{Acc}_D$, then acc waccepts.
 - \circ Given D accepts $\langle M, w \rangle$ and M accepts w, show that acc waccepts


```
1 Definition acc p :=
2 let (M, w) := decode_machine_input p in
3 mlet b ← Call D p in
4 if b then Call M w else REJECT.
```

- 1. Show that if acc $\,$ w accepts, then $p \in \mathrm{Acc}_D$, ie, $\,$ $\,$ $\,$ $\,$ $\,$ accepts $\,$ $\langle M,p \rangle$ and $\,$ $\,$ accepts $\,$ $\,$ $\,$ $\,$
 - \circ Case analysis on Call D <M,w> $\hbox{1. D accepts <M,w>, then we get that } M$ accepts w
 - 2. D rejects <M, w>, then contradiction
- 2. Show that if $w \in \mathrm{Acc}_D$, then acc $\,$ w accepts.
 - \circ Given D accepts $\langle M, w \rangle$ and M accepts w, show that acc waccepts
 - Rewrite each in code, get accept

Part 2. Show that $\mathrm{Acc}_D = A_{TM}$

1. Show that if $\langle M,w
angle \in \mathrm{Acc}_D$, then $\langle M,p
angle \in A_{TM}$

- 1. Show that if $\langle M,w
 angle \in \mathrm{Acc}_D$, then $\langle M,p
 angle \in A_{TM}$
 - \circ We have M accepts w from $\langle M,p
 angle \in \mathrm{Acc}_D$

- 1. Show that if $\langle M,w
 angle \in \mathrm{Acc}_D$, then $\langle M,p
 angle \in A_{TM}$
 - \circ We have M accepts w from $\langle M,p
 angle \in \mathrm{Acc}_D$
- 2. Show that if (i) $\langle M,w
 angle \in A_{TM}$, then $\langle M,w
 angle \in \mathrm{Acc}_D$, ie

- 1. Show that if $\langle M,w
 angle \in \mathrm{Acc}_D$, then $\langle M,p
 angle \in A_{TM}$
 - \circ We have M accepts w from $\langle M,p
 angle \in \mathrm{Acc}_D$
- 2. Show that if (i) $\langle M,w
 angle\in A_{TM}$, then $\langle M,w
 angle\in {
 m Acc}_D$, ie M accepts w and D accepts $\langle M,w
 angle$

- 1. Show that if $\langle M,w
 angle \in \mathrm{Acc}_D$, then $\langle M,p
 angle \in A_{TM}$
 - \circ We have M accepts w from $\langle M,p
 angle \in \mathrm{Acc}_D$
- 2. Show that if (i) $\langle M,w
 angle\in A_{TM}$, then $\langle M,w
 angle\in {
 m Acc}_D$, ie M accepts w and D accepts $\langle M,w
 angle$
 - \circ We have that M accepts w from (i)

- 1. Show that if $\langle M,w
 angle \in \mathrm{Acc}_D$, then $\langle M,p
 angle \in A_{TM}$
 - \circ We have M accepts w from $\langle M,p
 angle \in \mathrm{Acc}_D$
- 2. Show that if (i) $\langle M,w
 angle\in A_{TM}$, then $\langle M,w
 angle\in {
 m Acc}_D$, ie M accepts w and D accepts $\langle M,w
 angle$
 - \circ We have that M accepts w from (i)
 - \circ We have that D accepts $\langle M, w
 angle$ since M halts.

Part 3. Show that acc is decidable

Proof by contradiction. Assume acc loops with $p=\langle M,w
angle$ and reach a contradiction.

Part 3. Show that acc is decidable

Proof by contradiction. Assume acc loops with $p=\langle M,w\rangle$ and reach a contradiction. If acc loops with p, then D accepts p and M loops with w, or D loops with p^\dagger

Part 3. Show that acc is decidable

Proof by contradiction. Assume acc loops with $p=\langle M,w\rangle$ and reach a contradiction. If acc loops with p, then D accepts p and M loops with w, or D loops with p

ullet If D accepts p, then M halts with w, which contradicts with M loops with w

Part 3. Show that acc is decidable

Proof by contradiction. Assume acc loops with $p=\langle M,w\rangle$ and reach a contradiction. If acc loops with p, then D accepts p and M loops with w, or D loops with p

- ullet If D accepts p, then M halts with w, which contradicts with M loops with w
- If D loops with p, we reach a contradiction because D is a decider

^{†:} Why?

E_{TM} : Emptiness of TM

(Is the language of this TM empty?)

Set-based

```
E_{\mathsf{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}
```

Function-based

```
def E_TM(M):
  return L(M) == {}
```

Proof overview: show that acc decides A_{TM}

```
def build_M1(M,w):
    def M1(x):
        if x == w:
            return M accepts w
        else:
        return False
    return M1
```

```
def acc(M, w):
   b = E_TM(build_M1(M, w))
   return not b
```

- $ullet \ w \in L(exttt{M1}) \iff \langle exttt{M1}
 angle
 otin E_{TM}$
- $w \in L(\mathtt{M1}) \iff w \in L(M)$

Proof follows by contradiction.

Proof follows by contradiction.

1. Show that E_{TM} decidable implies A_{TM} decidable.

Proof follows by contradiction.

- 1. Show that E_{TM} decidable implies A_{TM} decidable.
- 2. Reach contradiction by applying Thm 4.11 to (1)

Proof follows by contradiction.

- 1. Show that E_{TM} decidable implies A_{TM} decidable.
- 2. Reach contradiction by applying Thm 4.11 to (1)

Goal: E_{TM} decidable implies A_{TM} decidable

Proof follows by contradiction.

- 1. Show that E_{TM} decidable implies A_{TM} decidable.
- 2. Reach contradiction by applying Thm 4.11 to (1)

Goal: E_{TM} decidable implies A_{TM} decidable

Let D decide E_{TM} .

1. Show that acc recognizes A_{TM}

Proof follows by contradiction.

- 1. Show that E_{TM} decidable implies A_{TM} decidable.
- 2. Reach contradiction by applying Thm 4.11 to (1)

Goal: E_{TM} decidable implies A_{TM} decidable

Let D decide E_{TM} .

- 1. Show that acc recognizes A_{TM}
 - 1. Show that $A_{\sf TM} = {
 m Acc}_D$ where ${
 m Acc}_D = \{\langle M,w
 angle \mid L({
 m M1}_{M,w})
 eq \emptyset\}$ (e_tm_a_tm_spec)

Proof follows by contradiction.

- 1. Show that E_{TM} decidable implies A_{TM} decidable.
- 2. Reach contradiction by applying Thm 4.11 to (1)

Goal: E_{TM} decidable implies A_{TM} decidable

Let D decide E_{TM} .

- 1. Show that acc recognizes A_{TM}
 - 1. Show that $A_{\sf TM} = {
 m Acc}_D$ where ${
 m Acc}_D = \{\langle M,w
 angle \mid L({
 m M1}_{M,w})
 eq \emptyset\}$ (e_tm_a_tm_spec)
 - 2. Show that acc recognizes Acc_D (E_tm_A_tm_recognizes)

Proof follows by contradiction.

- 1. Show that E_{TM} decidable implies A_{TM} decidable.
- 2. Reach contradiction by applying Thm 4.11 to (1)

Goal: E_{TM} decidable implies A_{TM} decidable

Let D decide E_{TM} .

- 1. Show that acc recognizes A_{TM}
 - 1. Show that $A_{\sf TM} = {
 m Acc}_D$ where ${
 m Acc}_D = \{\langle M,w
 angle \mid L({ t M1}_{M,w})
 eq \emptyset\}$ (e_tm_a_tm_spec)
 - 2. Show that acc recognizes Acc_D (E_tm_A_tm_recognizes)
- 2. Show that acc is a decider (decider_E_tm_A_tm)

Part 1.1: Show that $A_{\mathsf{TM}} = \mathrm{Acc}_D$ where $\mathrm{Acc}_D = \{\langle M, w
angle \mid L(\mathtt{M1}_{M,w})
eq \emptyset \}$

Theorem not_empty_to_accept

1. Show that: If $L(\mathtt{M1}_{M,w}) \neq \emptyset$, then M accepts w.

Part 1.1: Show that $A_{\mathsf{TM}} = \mathrm{Acc}_D$ where $\mathrm{Acc}_D = \{\langle M, w
angle \mid L(\mathtt{M1}_{M,w})
eq \emptyset \}$

- 1. Show that: If $L(\mathtt{M1}_{M,w}) \neq \emptyset$, then M accepts w.
 - \circ Case analysis on running M with input w:

Part 1.1: Show that $A_{\mathsf{TM}} = \mathrm{Acc}_D$ where $\mathrm{Acc}_D = \{\langle M, w
angle \mid L(\mathtt{M1}_{M,w})
eq \emptyset \}$

- 1. Show that: If $L(\mathtt{M1}_{M,w}) \neq \emptyset$, then M accepts w.
 - \circ Case analysis on running M with input w:
 - ullet Case (a) M accepts w: use assumption to conclude

Part 1.1: Show that $A_{\mathsf{TM}} = \mathrm{Acc}_D$ where $\mathrm{Acc}_D = \{\langle M, w
angle \mid L(\mathtt{M1}_{M,w})
eq \emptyset \}$

- 1. Show that: If $L(\mathtt{M1}_{M,w}) \neq \emptyset$, then M accepts w.
 - \circ Case analysis on running M with input w:
 - Case (a) M accepts w: use assumption to conclude
 - Case (b) M rejects w: we can conclude that $L(\mathtt{M1}_{M,w}) = \emptyset$ from (b)

Part 1.1: Show that $A_{\mathsf{TM}} = \mathrm{Acc}_D$ where $\mathrm{Acc}_D = \{\langle M, w
angle \mid L(\mathtt{M1}_{M,w})
eq \emptyset \}$

- 1. Show that: If $L(\mathtt{M1}_{M,w}) \neq \emptyset$, then M accepts w.
 - \circ Case analysis on running M with input w:
 - ullet Case (a) M accepts w: use assumption to conclude
 - lacksquare Case (b) M rejects w: we can conclude that $L(\mathtt{M1}_{M,w}) = \emptyset$ from (b)
 - Case (c) M loops with w: same as above

Part 1.1: Show that $A_{\mathsf{TM}} = \mathrm{Acc}_D$ where $\mathrm{Acc}_D = \{\langle M, w
angle \mid L(\mathtt{M1}_{M,w})
eq \emptyset\}$

Theorem accept_to_not_empty

2. Show that: If M accepts w, then $L(\mathtt{M1}_{M,w}) \neq \emptyset$.

Part 1.1: Show that $A_{\mathsf{TM}} = \mathrm{Acc}_D$ where $\mathrm{Acc}_D = \{\langle M, w
angle \mid L(\mathtt{M1}_{M,w})
eq \emptyset \}$

- 2. Show that: If M accepts w, then $L(\mathtt{M1}_{M,w}) \neq \emptyset$.
 - 1. Proof follows by contradiction: assume $L(\mathtt{M1}_{M,w}) = \emptyset$.

Part 1.1: Show that $A_{\mathsf{TM}} = \mathrm{Acc}_D$ where $\mathrm{Acc}_D = \{\langle M, w
angle \mid L(\mathtt{M1}_{M,w})
eq \emptyset \}$

- 2. Show that: If M accepts w, then $L(\mathtt{M1}_{M,w}) \neq \emptyset$.
 - 1. Proof follows by contradiction: assume $L(\mathtt{M1}_{M,w}) = \emptyset$.
 - 2. We know that $\mathtt{M1}_{M,w}$ does not accept w from (2.1)

Part 1.1: Show that $A_{\mathsf{TM}} = \mathrm{Acc}_D$ where $\mathrm{Acc}_D = \{\langle M, w
angle \mid L(\mathtt{M1}_{M,w})
eq \emptyset\}$

- 2. Show that: If M accepts w, then $L(\mathtt{M1}_{M,w}) \neq \emptyset$.
 - 1. Proof follows by contradiction: assume $L(\mathtt{M1}_{M,w}) = \emptyset$.
 - 2. We know that $\mathtt{M1}_{M,w}$ does not accept w from (2.1)
 - 3. To contradict 2.2, we show that $\mathtt{M1}_{M,w}$ accepts w

Part 1.1: Show that $A_{\mathsf{TM}} = \mathrm{Acc}_D$ where $\mathrm{Acc}_D = \{\langle M, w
angle \mid L(\mathtt{M1}_{M,w})
eq \emptyset\}$

- 2. Show that: If M accepts w, then $L(\mathtt{M1}_{M,w}) \neq \emptyset$.
 - 1. Proof follows by contradiction: assume $L(\mathtt{M1}_{M,w}) = \emptyset$.
 - 2. We know that $\mathtt{M1}_{M,w}$ does not accept w from (2.1)
 - 3. To contradict 2.2, we show that $\mathtt{M1}_{M,w}$ accepts w
 - 1. Since x=w and (2.1), then $\mathtt{M1}_{M,w}$ accepts w