Today we will learn...

Decidability of
- The Halting Problem
- Emptiness for TM
- Regularity
- Equality

Section 5.1
Recap

Decidable languages:

- \(A_{\text{DFA}}, A_{\text{REX}}, A_{\text{NFA}}, A_{\text{CFG}} \)

\[
\text{def } A_\text{DFA}(D, w):
\text{return } D \text{ accepts } w
\]

- \(E_{\text{DFA}}, E_{\text{CFG}} \)

\[
\text{def } E_\text{DFA}(D):
\text{return } L(D) = \{\}
\]

- \(E_{Q_{\text{DFA}}} \)

\[
\text{def } E_Q_\text{DFA}(D1, D2):
\text{return } L(D1) = L(D2)
\]

\[
A_{\text{DFA}} = \{\langle D, w \rangle \mid D \text{ accepts } w\}
\]

\[
E_{\text{DFA}} = \{\langle D \rangle \mid L(D) = \emptyset\}
\]

\[
E_{Q_{\text{DFA}}} = \{\langle N_1, N_2 \rangle \mid L(N_1) = L(N_2)\}\]
Exercise 1

Prove or falsify the following statement: EQ_{REX} is undecidable.
Exercise 1

Prove or falsify the following statement: EQ_{REX} is undecidable.

Proof. False. EQ_{REX} is decidable, as given by the following pseudo code, where EQ_DFA is the decider of EQ_{DFA} and REX_TO_DFA is the conversion from a regular expression into a DFA.

```python
def EQ_REX(R1, R2):
    return EQ_DFA(REX_TO_DFA(R1), REX_TO_DFA(R2))
```
Exercise 2

Let D be the DFA below

```
0 1 0
q1 --→ 1 --→ 0 ----> q3
    |        |        |
    1 0 1
    |        |        |
start ----> q2
```

- Exercise 2.1: Is $\langle D, 0100 \rangle \in A_{DFA}$?
- Exercise 2.2: Is $\langle D, 101 \rangle \in A_{DFA}$?
- Exercise 2.3: Is $\langle D \rangle \in A_{DFA}$?

- Exercise 2.4: Is $\langle D, 101 \rangle \in A_{REX}$?
- Exercise 2.5: Is $\langle D \rangle \in E_{DFA}$?
- Exercise 2.6: Is $\langle D, D \rangle \in EQ_{DFA}$?
- Exercise 2.7: Is 101 $\in A_{REX}$?

def A_DFA(D, w): return D accept w
def E_DFA(D): return L(D) == {}
def EQ_DFA(D1, D2): return L(D1) == L(D2)
Exercise 3

Recall that DFAs are closed under \cap. Prove the following statement.

If A is regular, then X_A decidable.

$$X_A = \{ \langle D \rangle | D \text{ is a DFA } \land L(D) \cap A \neq \emptyset \}$$
Exercise 3

Recall that DFAs are closed under \cap. Prove the following statement.

If A is regular, then X_A decidable.

$$X_A = \{ \langle D \rangle \mid D \text{ is a DFA} \land L(D) \cap A \neq \emptyset \}$$

Proof. If A is regular, then let C be the DFA that recognizes A. Let intersect be the implementation of \cap and E_{DFA} the decider of E_{DFA}. The following is the decider of X_A.

```python
def X_A(D):
    return not E_DFA(intersect(C, D))
```
Theorem 4.22

L decidable iff L recognizable and L co-recognizable
Theorem 4.22

L decidable iff L recognizable and L co-recognizable

Proof. We can divide the above theorem in the following three results.

1. If L decidable, then L is recognizable. (*Proved.*)
2. If L decidable, then L is co-recognizable. (*Proved.*)
3. If L recognizable and L co-recognizable, then L decidable.
Part 3. If L recognizable and \overline{L} recognizable, then L decidable.

We need to extend our mini-language of TMs

```plaintext
pllet b ← P1 \ P2 in P3
Runs P1 and P2 in parallel.
- If P1 and P2 loop, the whole computation loops
- If P1 halts and P2 halts, pass the success of both to P3
- If P1 halts and P2 loops, pass the success of P1 to P3
- If P1 loops and P2 halts, pass the success of P2 to P3
```

Inductive par_result :=
| pleft: bool → par_result
| pright: bool → par_result
| pboth: bool → bool → par_result.
Part 3. If L recognizable and \overline{L} recognizable, then L decidable.

Proof.

1. Let M_1 recognize L from assumption L recognizable
2. Let M_2 recognize \overline{L} from assumption \overline{L} recognizable
3. Build the following machine

```
Definition par_run M1 M2 w :=
  plet b ← Call M1 w \ Call M2 w in
  match b with
  | pleft true     ⇒ ACCEPT
  | pboth true _   ⇒ ACCEPT
  | _              ⇒ REJECT
  end.
```

4. Show that $\text{par_run } M_1 M_2$ recognizes L and is a decider.
Part 3. If L recognizable and \overline{L} recognizable, then L decidable.

Point 4: Show that $\text{par}_\text{run} \ M1 \ M2$ recognizes L and is a decider.

1. Show that $\text{par}_\text{run} \ M1 \ M2$ recognizes L: $\text{par}_\text{run} \ M1 \ M2$ accepts w iff $L(w)$
2. $\text{par}_\text{run} \ M1 \ M2$ accepts w, then $w \in L$
3. $w \in L$, then $\text{par}_\text{run} \ M1 \ M2$ accepts w case analysis on run $M2$ with w

Definition $\text{par}_\text{run} \ M1 \ M2 \ w :=$

```
plet b <- Call M1 w \ Call M2 w in
match b with
  | pleft true
  | pboth true _ => ACCEPT
  | _ => REJECT
end.
```

- $M1$ recognizes L
- $M2$ recognizes \overline{L}
- Lemma $\text{par}_\text{mach}_\text{lang}$
Part 3. If L recognizable and \overline{L} recognizable, then L decidable.

Point 4: Show that $\text{par_run } M_1 M_2$ recognizes L and is a decider.

1. Show that $\text{par_run } M_1 M_2$ recognizes L: $\text{par_run } M_1 M_2$ accepts w iff $L(w)$
 1. $\text{par_run } M_1 M_2$ accepts w, then $w \in L$ by case analysis on $\text{Call } M_1 w \parallel \text{Call } M_2 w$:
 - $\text{pleft } \text{true and } M_1 \text{ accepts } w$: holds since M_1 recognizes L
 - $\text{both } \text{true } \text{ and } M_1 \text{ accepts } w$: same as above
 - otherwise: contradiction
 2. $w \in L$, then $\text{par_run } M_1 M_2$ accepts w case analysis on run M_2 with w
 - M_2 accept w: $\text{par_run } M_1 M_2$ accept since M_1 accepts with w
 - M_2 loops w: $\text{par_run } M_1 M_2$ accept since M_1 accepts with w
 - M_2 reject w: $\text{par_run } M_1 M_2$ accept since M_1 accepts with w
Part 3. If L recognizable and \overline{L} recognizable, then L decidable.

Point 4: Show that $\text{par_run } M_1 \ M_2$ recognizes L and is a decider.

2. Show that $\text{par_run } M_1 \ M_2$ decides L

(Walk through the proof of $\text{recognizable_co_recognizable_to_decidable}$...)