CS420

Introduction to the Theory of Computation
Lecture 21: Undecidability

Tiago Cogumbreiro

CS420) Undecidability) Lecture21 > Tiago Cogumbreiro

Today we will learn... ?/11

e Turing Machine theory in Coq
o Undecidability
e Unrecognizability

| Section 4.2

CS420) Undecidability Y Lecture21 > Tiago Cogumbreiro

Turing Machine theory in Coqg

Turing Machine theory in Coq ?/11

e What? | am implementing the Sipser book in Coq.

e Why?
o So that we can dive into any proof at any level of detail.
o So that you can inspect any proof and step through it on your own.
o So that you can ask why and immediately have the answer.

Do you want to help out?

CS420) Undecidability) Lecture21 > Tiago Cogumbreiro

Why is proving important to CS? ?/11

o Generality is important.
Whenever we implement a program, we are implicitly proving some notion of
correctness in our minds (the program is the proof).

e Rigourisimportant.
The importance of having precise definitions. Fight ambiguity!

o Assume nothing and question everything.
In formal proofs, we are pushed to ask why? And we have a framework to understand
why.

e Models are important.

The basis of formal work is abstraction (or models), e.g., Turing machines as models of
computers; REGEX vs DFAs vs NFAs.

What follows is a description of our Cog implementation

CS420 D Undecidability Y Lecture21 > Tiago Cogumbreiro

Turing Machine Theory in Coqg ?/11

Unspecified input/machines

For the remainder of this module we leave the input (string) and a Turing Machine
unspecified.

Variable input: Type.
Variable machine: Type.

CS420 Y Undecidability) Lecture21 > Tiago Cogumbreiro

Turing Machine Theory in Coq ?/11

Unspecified input/machines

For the remainder of this module we leave the input (string) and a Turing Machine
unspecified.

Variable input: Type.
Variable machine: Type.

Runninga TM

We can run any Turing Machine given an input and know whether or not it accepts, rejects,
or loops on a given input. We leave running a Turing Machine unspecified.

Inductive result := Accept | Reject | Loop.

Variable run: machine — input — result.

CS420) Undecidability) Lecture21 > Tiago Cogumbreiro

What is a language? 7

BOSTON

A language is a predicate: a formula parameterized on the input.

Definition lang := input — Prop.
Defining a set/language
Set builder notation Functional encoding
L={z|P(z)} L(z) = P(z)

Defining membership
Set membership Functional encoding

r €L L(z)

CS420 Y Undecidability) Lecture21 > Tiago Cogumbreiro

Example ?/11

Set builder example Functional encoding

L= {a"b" | n >0} L(z) E 3n,z = a"b"

CS420 Y Undecidability) Lecture21 > Tiago Cogumbreiro

Thelanguage of a TM ?/11

Set builder notation

The language of a TM can be defined as:

L(M) ={w | M accepts w}
Functional encoding

Ly (w) = M accepts w
In Coq

Definition Lang (m:machine) : lang := fun w = run m w = Accept.

CS420) Undecidability) Lecture21 > Tiago Cogumbreiro

Recognizes ?/11

We give a formal definition of recognizing a language. We say that M recognizes L if, and
only if, M accepts w whenever w € L.

Definition Recognizes (m:machine) (L:lang) := forall w, run m w = Accept <= L w.

Examples

o Saying M recognizes L = {a™b™ | n > 0} is showing that there exist a proof that
shows that all inputs in language L are accepted by M and vice-versa.

e Trivially, M recognizes L(M).

CS420) Undecidability) Lecture21 > Tiago Cogumbreiro

We will prove 4 theorems ?/11

e Theorem 4.11 A, is undecidable
e Theorem 4.22 L is decidable if, and only if, L is recognizable and co-recognizable

e Corollary 4.23 ZTM IS unrecognizable
e Corollary 4.18 Some languages are unrecognizable

Why?

 We will learn that we cannot write a program that decides if a TM accepts a string
* We can define decidability in terms of recognizability+complement
e There are languages that cannot be recognized by some program

CS420) Undecidability) Lecture21 > Tiago Cogumbreiro

Theorem 4.11

A+ is undecidable

Theorem 4.11 ?/11

Functional view of A7y

def A_TM(M, w):
return M accepts w

Theorem 4.11: A1y is undecidable

Show that A_TM loops for some input.

Proofidea: Given a Turing machine

def negator(w):
M = decode_machine w
b = A_TM(M, w)
return not b

Given tht A_TM does not terminate, what is the result of negator (negator)?

CS420) Undecidability) Lecture21 > Tiago Cogumbreiro

UMASS
BOSTON

Theorem4.11 %

A7y is undecidable

Aty = {{M,w) | M is a TM that accepts w}

Lemma no_decides_a_tm: ~ exists m, Decides m A_tm.

1. Proof follows by contradiction.
2.Let D be the decider of Arj,

3. Consider the negator machine:

def negator(w):
M = decode_machine w
b = call D <M, w> def negator(f):
return not b return not f(f)

CS420) Undecidability) Lecture21 > Tiago Cogumbreiro

Theorem 4.11: A7y is undecidable Z

BOSTON

. def negator(w): _ Atm = {(M,w) | M is a TM that accepts w}
M = decode_machine w

b = call D <M, w>
return not b

B~ W =

4. Let negator be V. Case analysis on the result of running N with (IV') reach
contradiction.

5. Case N accepts (INV), or negator (negator).

CS420) Undecidability) Lecture21 > Tiago Cogumbreiro

Theorem 4.11: A7y is undecidable 2

BOSTON

. def negator(w): _ Atm = {(M,w) | M is a TM that accepts w}
M = decode_machine w

1

2.

3. b =-call D<M, w>
4 return not b

4. Let negator be V. Case analysis on the result of running N with (IV') reach
contradiction.

5. Case N accepts (INV), or negator (negator).
1. If N accepts (N), then D rejects (N, (N))

2. By the definition of D (via Aryr), then N rejects (N). Contradiction!

CS420) Undecidability) Lecture21 > Tiago Cogumbreiro

Theorem 4.11: A7y is undecidable 2

BOSTON

. def negator(w): _ Atm = {(M,w) | M is a TM that accepts w}
M = decode_machine w

1

2.

3. b =-call D<M, w>
4 return not b

4. Let negator be V. Case analysis on the result of running N with (IV') reach
contradiction.

5. Case N accepts (INV), or negator (negator).
1. If N accepts (N), then D rejects (N, (N))

2. By the definition of D (via Aryr), then N rejects (N). Contradiction!
6. Case N rejects (IV).

CS420) Undecidability) Lecture21 > Tiago Cogumbreiro

Theorem 4.11: A7y is undecidable Z

BOSTON

. def negator(w): _ Atm = {(M,w) | M is a TM that accepts w}
M = decode_machine w

1

2.

3. b =-call D<M, w>
4 return not b

4. Let negator be V. Case analysis on the result of running N with (IV') reach
contradiction.

5. Case N accepts (INV), or negator (negator).
1. If N accepts (N), then D rejects (N, (N))

2. By the definition of D (via Arys), then N rejects (N). Contradiction!
6. Case N rejects (IV).

1. If N rejects (IV), then D accepts (N, (N))
2. Thus, by definition of D (via Aryy), then N accepts (N). Contradiction!

CS420) Undecidability) Lecture21 > Tiago Cogumbreiro

Theorem 4.11: A7y is undecidable Z

BOSTON

. def negator(w): _ Atm = {(M,w) | M is a TM that accepts w}
M = decode_machine w

b = call D <M, w>
return not b

B~ W =

7.Case N loops (N).

CS420) Undecidability) Lecture21 > Tiago Cogumbreiro

Theorem 4.11: A7y is undecidable Z

BOSTON

. def negator(w): _ Atm = {(M,w) | M is a TM that accepts w}
M = decode_machine w

1

2.

3. b =-call D<M, w>
4 return not b

7.Case N loops (N).
1. If N loops (N), then D accepts (N, (N))

2. Thus, by definition of D (via A7), then N accepts (N). Contradiction!

CS420) Undecidability) Lecture21 Y Tiago Cogumbreiro

Understanding the Coqg formalism ?/11

Pseudo-code as a mini-language

1.Call M w
Use the Universal Turing machine to call a machine M with input w,

Returns whatever M returns by processing w

2.mlet x < P1 in P2
Runs pseudo-program P1; if P1 halts, passes a boolean with the result of acceptance to
P2.1f P1 loops, then the whole pseudo-program loops.

3.Ret r
A Turing Machine that returns whateverisinr.
Abbreviations: Ret Accept = ACCEPT, Ret Reject = REJECT, and Ret Loop = LOOP.

| This language is enough to prove the results in Section 4.2.

CS420) Undecidability) Lecture21 > Tiago Cogumbreiro

A,

Thenegator e
In Python In Coq
def negator(w): Definition negator D w :=
M = decode_machine w let M := decode_machine w in
b = call D <M, w> mlet b < Call D < M, w> in
return not b halt_with (negb b).

D is a parameter of a Turing machine, given (M, w) decides if M accepts w

W is a serialized Turing machine (M)

<M, w> is the serialized pair Mand w
b takes the result of calling D with <M, w>>
halt the machine with negation of b

CS420) Undecidability) Lecture21 > Tiago Cogumbreiro

Theorem 4.2

L decidable iff L is recognizable + co-recognizable

19/23

Theorem 4.22 ?/11
L decidable iff L recognizable and L co-recognizable

I Recall that L co-recognizable is L.

Complement

L={w|w¢L}
orL=Y"—L

CS420) Undecidability) Lecture21 > Tiago Cogumbreiro

Theorem 4.22 ?/11

L decidable iff L recognizable and L co-recognizable

Proof. We can divide the above theorem in the following three results.

1. I1f L decidable, then L is recognizable.
2.1f L decidable, then L is co-recognizable.

3.1f L recognizable and L co-recognizable, then L decidable.

CS420) Undecidability) Lecture21 Y Tiago Cogumbreiro

Part 1. If L decidable, then L is recognizable. m

BOSTON

Proof.

CS420) Undecidability) Lecture21 > Tiago Cogumbreiro

Part 1. If L decidable, then L is recognizable. m

Proof.
Unpacking the definition that L is decidable, we get that L is recognizable by some Turing

machine M and M is a decider. Thus, we apply the assumption that L is recognizable.

CS420) Undecidability) Lecture21 Y Tiago Cogumbreiro

.

Part 2: If L decidable, then L is co-recognizable.

BOSTON

Proof.

CS420) Undecidability) Lecture21 Y Tiago Cogumbreiro

A,

Part 2: If L decidable, then L is co-recognizable.

BOSTON

Proof.

1. We must show that if L is decidable, then L is decidable. T

2.Since Lis decidable, then Lis recognizable.

T Why? We prove in the next lesson.

CS420) Undecidability) Lecture21 > Tiago Cogumbreiro

