CS420

Introduction to the Theory of Computation

Lecture 21: Undecidability

Tiago Cogumbreiro

Today we will learn...

- Turing Machine theory in Coq
- Undecidability
- Unrecognizability

Section 4.2

Turing Machine theory in Coq

Turing Machine theory in Coq

- What? I am implementing the Sipser book in Coq.
- · Why?
 - So that we can dive into any proof at any level of detail.
 - So that you can inspect any proof and step through it on your own.
 - So that you can ask why and immediately have the answer.

Do you want to help out?

Why is proving important to CS?

Generality is important.

Whenever we implement a program, we are implicitly proving some notion of correctness in our minds (the program is the proof).

• Rigour is important.

The importance of having precise definitions. Fight ambiguity!

Assume nothing and question everything.

In formal proofs, we are pushed to ask why? And we have a framework to understand why.

Models are important.

The basis of formal work is abstraction (or models), e.g., Turing machines as models of computers; REGEX vs DFAs vs NFAs.

What follows is a description of our Coq implementation

Turing Machine Theory in Coq

Unspecified input/machines

For the remainder of this module we leave the input (string) and a Turing Machine unspecified.

```
Variable input: Type.
Variable machine: Type.
```

Turing Machine Theory in Coq

Unspecified input/machines

For the remainder of this module we leave the input (string) and a Turing Machine unspecified.

```
Variable input: Type.
Variable machine: Type.
```

Running a TM

We can run any Turing Machine given an input and know whether or not it accepts, rejects, or loops on a given input. We leave running a Turing Machine unspecified.

```
Inductive result := Accept | Reject | Loop.
Variable run: machine → input → result.
```

What is a language?

A language is a predicate: a formula parameterized on the input.

Definition lang := input \rightarrow **Prop**.

Defining a set/language

Set builder notation

$$L = \{x \mid P(x)\}$$

Functional encoding

$$L(x) \stackrel{\text{def}}{=} P(x)$$

Defining membership

Set membership

$$x \in L$$

Functional encoding

Example

Set builder example

$$L = \{a^n b^n \mid n \ge 0\}$$

Functional encoding

$$L(x)\stackrel{ ext{def}}{=} \exists n, x=a^nb^n$$

The language of a TM

Set builder notation

The language of a TM can be defined as:

$$L(M) = \{w \mid M \text{ accepts } w\}$$

Functional encoding

$$L_M(w) \stackrel{ ext{def}}{=} M ext{ accepts } w$$

In Coq

Definition Lang (m:machine) : lang := $fun w \Rightarrow run m w = Accept$.

Recognizes

We give a formal definition of recognizing a language. We say that M recognizes L if, and only if, M accepts w whenever $w \in L$.

```
Definition Recognizes (m:machine) (L:lang) := forall w, run m w = Accept \leftrightarrow L w.
```

Examples

- Saying M recognizes $L=\{a^nb^n\mid n\geq 0\}$ is showing that there exist a proof that shows that all inputs in language L are accepted by M and vice-versa.
- Trivially, M recognizes L(M).

We will prove 4 theorems

- Theorem 4.11 A_{TM} is undecidable
- ullet Theorem 4.22 L is decidable if, and only if, L is recognizable **and** co-recognizable
- Corollary 4.23 \overline{A}_{TM} is unrecognizable
- Corollary 4.18 Some languages are unrecognizable

Why?

- We will learn that we cannot write a program that decides if a TM accepts a string
- We can define decidability in terms of recognizability+complement
- There are languages that cannot be recognized by some program

Theorem 4.11 $oldsymbol{A}_{TM}$ is undecidable

Functional view of A_{TM}

```
def A_TM(M, w):
    return M accepts w
```

Theorem 4.11: A_{TM} is undecidable

Show that A_TM loops for **some** input.

Proof idea: Given a Turing machine

```
def negator(w): # w = <M>
    M = decode_machine w
    b = A_TM(M, w) # Decider D checks if M accepts <M>
    return not b # Return the opposite
```

Given tht A_TM does not terminate, what is the result of negator (negator)?

A_{TM} is undecidable

```
A_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts } w \}
```

```
Lemma no_decides_a_tm: ~ exists m, Decides m A_tm.
```

- 1. Proof follows by contradiction.
- 2. Let D be the decider of A_{TM}
- 3. Consider the negator machine:

```
def negator(w): # w = <M>
    M = decode_machine w
    b = call D <M, w> # Same as: A_TM(M, <M>)
    return not b # Return the opposite
```

```
# If we expand D and
# ignore decoding we get:
def negator(f):
   return not f(f)
```



```
1. def negator(w):
2. M = decode_machine w
3. b = call D <M, w> # A_TM(M, <M>)?
4. return not b # Return the opposite
A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts } w\}
```

- 4. Let negator be N. Case analysis on the result of running N with $\langle N \rangle$ reach contradiction.
- 5. Case N accepts $\langle N \rangle$, or negator (negator).


```
1. def negator(w):
2. M = decode_machine w
3. b = call D <M, w> # A_-TM(M, <M>)?
4. return not b # Return\ the\ opposite
A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts } w\}
```

- 4. Let negator be N. Case analysis on the result of running N with $\langle N \rangle$ reach contradiction.
- 5. Case N accepts $\langle N \rangle$, or negator(negator).
 - 1. If N accepts $\langle N \rangle$, then D rejects $\langle N, \langle N \rangle \rangle$
 - 2. By the definition of D (via A_{TM}), then N rejects $\langle N \rangle$. Contradiction!


```
1. def negator(w):
2. M = decode_machine w
3. b = call D <M, w> # A_-TM(M, <M>)?
4. return not b # Return\ the\ opposite
A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts } w\}
```

- 4. Let negator be N. Case analysis on the result of running N with $\langle N \rangle$ reach contradiction.
- 5. Case N accepts $\langle N \rangle$, or negator(negator).
 - 1. If N accepts $\langle N
 angle$, then D rejects $\langle N, \langle N
 angle
 angle$
 - 2. By the definition of D (via A_{TM}), then N rejects $\langle N \rangle$. Contradiction!
- 6. Case N rejects $\langle N \rangle$.


```
1. def negator(w):

2. M = decode_machine w

3. b = call D <M, w> # A_-TM(M, <M>)?

4. return not b # Return\ the\ opposite
A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts } w\}
```

- 4. Let negator be N. Case analysis on the result of running N with $\langle N \rangle$ reach contradiction.
- 5. Case N accepts $\langle N \rangle$, or negator (negator).
 - 1. If N accepts $\langle N \rangle$, then D rejects $\langle N, \langle N \rangle \rangle$
 - 2. By the definition of D (via A_{TM}), then N rejects $\langle N \rangle$. Contradiction!
- 6. Case N rejects $\langle N \rangle$.
 - 1. If N rejects $\langle N \rangle$, then D accepts $\langle N, \langle N \rangle \rangle$
 - 2. Thus, by definition of D (via A_{TM}), then N accepts $\langle N \rangle$. Contradiction!

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts } w \}$

```
1. def negator(w):
2.  M = decode_machine w
3.  b = call D <M, w> # M accepts <M>?
4.  return not b # Return the opposite
```

7. Case N loops $\langle N \rangle$.


```
1. def negator(w):
2. M = decode_machine w
3. b = call D <M, w> # M accepts <M>?
4. return not b # Return the opposite
A_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts } w \}
```

- 7. Case N loops $\langle N \rangle$.
 - 1. If N loops $\langle N \rangle$, then D accepts $\langle N, \langle N \rangle \rangle$
 - 2. Thus, by definition of D (via A_{TM}), then N accepts $\langle N \rangle$. Contradiction!

Understanding the Coq formalism

Pseudo-code as a mini-language

- 1.Call M w
 - Use the Universal Turing machine to call a machine M with input w, Returns whatever M returns by processing w
- 2. mlet $x \leftarrow P1$ in P2 Runs pseudo-program P1; if P1 halts, passes a boolean with the result of acceptance to P2. If P1 loops, then the whole pseudo-program loops.
- 3. Ret r
 A Turing Machine that returns whatever is in r.

 Abbreviations: Ret Accept = ACCEPT, Ret Reject = REJECT, and Ret Loop = LOOP.
- This language is enough to prove the results in Section 4.2.

The negator

In Python

```
def negator(w):
    M = decode_machine w
    b = call D <M, w> # M accepts <M>?
    return not b # Return the opposite
```

In Coq

```
Definition negator D w :=
  let M := decode_machine w in
  mlet b ← Call D ≪ M, w >> in
  halt_with (negb b).
```

- ullet D is a parameter of a Turing machine, given $\langle M,w
 angle$ decides if M accepts w
- ullet w is a serialized Turing machine $\langle M
 angle$
- «M, w» is the serialized pair M and w
- b takes the result of calling D with «M, w»
- halt the machine with negation of b

L decidable iff L is recognizable + co-recognizable

 $oldsymbol{L}$ decidable iff $oldsymbol{L}$ recognizable and $oldsymbol{L}$ co-recognizable

Recall that L co-recognizable is \overline{L} .

Complement

$$\overline{L} = \{ w \mid w
otin L \}$$
 Or, $\overline{L} = \Sigma^\star - L$

L decidable iff L recognizable and L co-recognizable

Proof. We can divide the above theorem in the following three results.

- 1. If L decidable, then L is recognizable.
- 2. If L decidable, then L is co-recognizable.
- 3. If L recognizable and L co-recognizable, then L decidable.

Part 1. If $m{L}$ decidable, then $m{L}$ is recognizable.

Proof.

Part 1. If $m{L}$ decidable, then $m{L}$ is recognizable.

Proof.

Unpacking the definition that L is decidable, we get that L is recognizable by some Turing machine M and M is a decider. Thus, we apply the assumption that L is recognizable.

Part 2: If $m{L}$ decidable, then $m{L}$ is co-recognizable.

Proof.

Part 2: If $m{L}$ decidable, then $m{L}$ is co-recognizable.

Proof.

- 1. We must show that if L is decidable, then \overline{L} is decidable. †
- 2. Since \overline{L} is decidable, then \overline{L} is recognizable.

^{†:} Why? We prove in the next lesson.