
CS420
Introduction to the Theory of Computation

Lecture 20: Acceptance, emptiness and equality tests

Tiago Cogumbreiro

CS420 ☽ Acceptance, emptiness and equality tests ☽ Lecture 20 ☽ Tiago Cogumbreiro 1 / 26

Today we will learn…
Acceptance tests
Emptiness tests
Equality tests

Section 4.1

CS420 ☽ Acceptance, emptiness and equality tests ☽ Lecture 20 ☽ Tiago Cogumbreiro 2 / 26

Why do we need

Turing Machines?

3 / 26

Why do we need Turing Machines?
Turing Machines are Computers!
Turing Machines are Programs!
We will study mathematically the limits of what is possible

CS420 ☽ Acceptance, emptiness and equality tests ☽ Lecture 20 ☽ Tiago Cogumbreiro 4 / 26

Turing Recognizable

5 / 26

Decision problems
Disclaimer: Henceforth, when we say a program, we are restricting ourselves to decision
problems.

Example: DFA accepting/rejecting a string
Example: PDA accepting/rejecting a string
Example: functions that return a boolean
Example: programs run until they print yes/no
Example: computers that run until they turn on a red/green light

CS420 ☽ Acceptance, emptiness and equality tests ☽ Lecture 20 ☽ Tiago Cogumbreiro 6 / 26

Turing Recognizable
Recognized language of TM
Notation is the set of strings that accepts, its recognized language.

De�nition 3.5: Turing-Recognizable language
A language is Turing-recognizable if some TM recognizes it.

L(M) M

CS420 ☽ Acceptance, emptiness and equality tests ☽ Lecture 20 ☽ Tiago Cogumbreiro 7 / 26

What is a decidable Turing Machine?

8 / 26

What is a decidable Turing Machine?
For all inputs: REJECT ACCEPT

(No loops!)

∨

8 / 26

Turing Decidable
A TM that for all inputs either accepts or rejects, and does not loop forever.

De�nition 3.6: Decidable language
A language is decidable if some Turing-decidable machine recognizes it.

How do I know if a Turing Machine is decidable?

CS420 ☽ Acceptance, emptiness and equality tests ☽ Lecture 20 ☽ Tiago Cogumbreiro 9 / 26

Turing Decidable
A TM that for all inputs either accepts or rejects, and does not loop forever.

De�nition 3.6: Decidable language
A language is decidable if some Turing-decidable machine recognizes it.

How do I know if a Turing Machine is decidable?

We prove it!

CS420 ☽ Acceptance, emptiness and equality tests ☽ Lecture 20 ☽ Tiago Cogumbreiro 9 / 26

Recap
A decidable TM REJECT/ACCEPT any input
A decidable language is one that is recognized by a decidable TM

CS420 ☽ Acceptance, emptiness and equality tests ☽ Lecture 20 ☽ Tiago Cogumbreiro 10 / 26

Decidable algorithms
Algorithms are equivalent to TMs
An algorithm that returns REJECT/ACCEPT (eg, a boolean) for all inputs

A decidable algorithm is always total

A total function is de�ned (ie, returns a value) for all inputs. Looping implies that no
value is being returned.
In some programming languages (eg, Coq, Agda, Idris) you can write total functions
(mechanically proven by the language).

†

CS420 ☽ Acceptance, emptiness and equality tests ☽ Lecture 20 ☽ Tiago Cogumbreiro 11 / 26

Decidable algorithms
Algorithms are equivalent to TMs
An algorithm that returns REJECT/ACCEPT (eg, a boolean) for all inputs

A decidable algorithm is always total

A total function is de�ned (ie, returns a value) for all inputs. Looping implies that no
value is being returned.
In some programming languages (eg, Coq, Agda, Idris) you can write total functions
(mechanically proven by the language).

Proving decidability

requires a proof that the function terminates!

(along with correctness)

†

CS420 ☽ Acceptance, emptiness and equality tests ☽ Lecture 20 ☽ Tiago Cogumbreiro 11 / 26

Decidable algorithms
Example

Our algorithm that implements DFA acceptance

def dfa_accepts(dfa, inputs):
 st = dfa.start
 for i in inputs:
 st = dfa.state_transition(st, i)
 return st in dfa.accepted_states

Termination proof. The function loops over len(inputs)-steps (which is a natural number)
and then returns a boolean.

CS420 ☽ Acceptance, emptiness and equality tests ☽ Lecture 20 ☽ Tiago Cogumbreiro 12 / 26

: Acceptance tests
Decidable algorithms on acceptance

(Will X accept this input?)

AX

13 / 26

: DFA Acceptance
The language of all DFAs that accept a given string

Theorem 4.1. is a decidable language.

Proof.

ADFA

w

A =DFA {⟨B,w⟩ ∣ B is a DFA that accepts input string w}

ADFA

CS420 ☽ Acceptance, emptiness and equality tests ☽ Lecture 20 ☽ Tiago Cogumbreiro 14 / 26

: DFA Acceptance
The language of all DFAs that accept a given string

Theorem 4.1. is a decidable language.

Proof.
We already showed that function dfa_accepts is correct and that it terminates, thus there
exists a TM that encodes it and that TM is decidable.

ADFA

w

A =DFA {⟨B,w⟩ ∣ B is a DFA that accepts input string w}

ADFA

CS420 ☽ Acceptance, emptiness and equality tests ☽ Lecture 20 ☽ Tiago Cogumbreiro 14 / 26

: NFA Acceptance
The language of all NFAs that accept a given string

Theorem 4.2. is a decidable language.

Proof.

ANFA

w

A =NFA {⟨N ,w⟩ ∣ N is an NFA that accepts input string w}

ANFA

CS420 ☽ Acceptance, emptiness and equality tests ☽ Lecture 20 ☽ Tiago Cogumbreiro 15 / 26

: NFA Acceptance
The language of all NFAs that accept a given string

Theorem 4.2. is a decidable language.

Proof.
If we assume that the function that converts a DFA into an NFA is total, then the following
algorithm is total and correct:

def nfa_accepts(nfa, input):
 return dfa_accepts(nfa_to_dfa(nfa), input)

And therefore, the TM that implements it is decidable, and so is .

ANFA

w

A =NFA {⟨N ,w⟩ ∣ N is an NFA that accepts input string w}

ANFA

ANFA

CS420 ☽ Acceptance, emptiness and equality tests ☽ Lecture 20 ☽ Tiago Cogumbreiro 15 / 26

: Regular Expression Acceptance
The language of all regex that accept a given string

Theorem 4.3. is a decidable language.

Proof.

AREX

w

A =REX {⟨R,w⟩ ∣ R is an regular expression that accepts input string w}

AREX

CS420 ☽ Acceptance, emptiness and equality tests ☽ Lecture 20 ☽ Tiago Cogumbreiro 16 / 26

: Regular Expression Acceptance
The language of all regex that accept a given string

Theorem 4.3. is a decidable language.

Proof.
Similarly, if we assume that the function that converts a regular expression into an NFA is
total, then the following algorithm is total and correct:

def rex_accepts(rex, input):
 return nfa_accepts(rex_to_nfa(nfa), input)

And therefore, the TM that implements it is decidable, and so is .

AREX

w

A =REX {⟨R,w⟩ ∣ R is an regular expression that accepts input string w}

AREX

AREX

CS420 ☽ Acceptance, emptiness and equality tests ☽ Lecture 20 ☽ Tiago Cogumbreiro 16 / 26

: Context-Free-Grammar Acceptance
The language of all context-free grammars that accept a given string

Theorem 4.7. is a decidable language.

Proof.

ACFG

w

A =CFG {⟨G,w⟩ ∣ G is a context-free grammar that accepts input string w}

ACFG

CS420 ☽ Acceptance, emptiness and equality tests ☽ Lecture 20 ☽ Tiago Cogumbreiro 17 / 26

: Context-Free-Grammar Acceptance
The language of all context-free grammars that accept a given string

Theorem 4.7. is a decidable language.

Proof.
We studied the CYK algorithm that is decidable and given a CFG can test the acceptance of
a CFG. Additionally, we also studied a decidable acceptance algorithm for PDAs, so we
could convert the CFG to a PDA (which is a total function).

ACFG

w

A =CFG {⟨G,w⟩ ∣ G is a context-free grammar that accepts input string w}

ACFG

CS420 ☽ Acceptance, emptiness and equality tests ☽ Lecture 20 ☽ Tiago Cogumbreiro 17 / 26

: Emptiness tests
Decidable algorithms on emptiness

(Is the language of X empty?)

EX

18 / 26

: DFA Emptiness
The set of DFAs that recognize an empty language.

Theorem 4.4. is a decidable language.

Proof.

EDFA

E =DFA {⟨A⟩ ∣ A is a DFA and L(A) = ∅}

EDFA

CS420 ☽ Acceptance, emptiness and equality tests ☽ Lecture 20 ☽ Tiago Cogumbreiro 19 / 26

: DFA Emptiness
The set of DFAs that recognize an empty language.

Theorem 4.4. is a decidable language.

Proof. (Note: we do not argue the correctness, although technically we should.)

1. Mark the initial state of DFA as to-visit and visited.

2. While there are states to visit: Unmark one to-visit and mark all transitions that have not
been visited as to-visit and as visited

3. Accept when zero visited states are accepted, otherwise reject.

Totality argument: The loop terminates because at each step the set of potential states to
visit is bounded by the total number of states and that number decreases by at least one at
each iteration step.

EDFA

E =DFA {⟨A⟩ ∣ A is a DFA and L(A) = ∅}

EDFA

A

CS420 ☽ Acceptance, emptiness and equality tests ☽ Lecture 20 ☽ Tiago Cogumbreiro 19 / 26

def is_empty(dfa):
 to_visit = [dfa.start_state]
 visited = set(to_visit)
 while len(to_visit) > 0:
 node = to_visit.pop()
 for i in dfa.alphabet:
 st = dfa.state_transition(st,i)
 if st not in visited:
 to_visit.append(st)
 visited.add(st)
 for st in visited:
 if st in dfa.accepted_states:
 return True
 return False

: DFA Emptiness

Python implementation

EDFA

CS420 ☽ Acceptance, emptiness and equality tests ☽ Lecture 20 ☽ Tiago Cogumbreiro 20 / 26

: CFG Emptiness
The set of CFGs that recognize an empty language.

Theorem 4.8. is a decidable language.

Proof.

ECFG

E =CFG {⟨G⟩ ∣ G is a CFG and L(G) = ∅}

ECFG

CS420 ☽ Acceptance, emptiness and equality tests ☽ Lecture 20 ☽ Tiago Cogumbreiro 21 / 26

: CFG Emptiness
The set of CFGs that recognize an empty language.

Theorem 4.8. is a decidable language.

Proof.

1. Mark all terminal symbols of G
2. Until no new variables get marked

Mark any variable where G has a rule and each has been marked.

3. If the start variable is marked reject, otherwise accept.

Totality argument: The set of unmarked variables is bounded by the set of all variables and
terminals. At each iteration the set of unmarked variables increases until it terminates.

ECFG

E =CFG {⟨G⟩ ∣ G is a CFG and L(G) = ∅}

ECFG

G→ A …A1 n Ai

CS420 ☽ Acceptance, emptiness and equality tests ☽ Lecture 20 ☽ Tiago Cogumbreiro 21 / 26

: Equality tests
Decidable algorithms on equality

(Can we always test if two elements of X are equal?)

EQX

22 / 26

: DFA Equality
The set of DFAs that are equal to one another.

Theorem 4.5. is a decidable language.

Proof.

EQDFA

EQ =DFA {⟨A,B⟩ ∣ A,B are DFAs and L(A) = L(B)}

EQDFA

CS420 ☽ Acceptance, emptiness and equality tests ☽ Lecture 20 ☽ Tiago Cogumbreiro 23 / 26

Theorem 4.5. is a decidable language.

Proof.
Let the symmetric difference be de�ned as:

1. It is easy to see that if, and only if, .

2. is closed under the set of regular languages

3. The algorithm then becomes testing the emptiness of the automaton , which we
know to be decidable.

: The set difference and the union are closed under the set of regular languages.

: The automaton can be trivially de�ned as automaton-operations.

EQDFA

A△B = (A−B) ∪ (B −A)

L(A) = L(B) L(A) △ L(B) = ∅
A△B †

A△B
⋆

†

⋆ A△B

CS420 ☽ Acceptance, emptiness and equality tests ☽ Lecture 20 ☽ Tiago Cogumbreiro 24 / 26

: CFG EqualityEQCFG

25 / 26

: CFG Equality
Undecidable

We know that is decidable

Why not use the symmetric difference?

EQCFG

ECFG

CS420 ☽ Acceptance, emptiness and equality tests ☽ Lecture 20 ☽ Tiago Cogumbreiro 26 / 26

: CFG Equality
Undecidable

We know that is decidable

Why not use the symmetric difference?
Set difference is not closed with CFGs

Counter-example:

 is CF

 is CF

However, is not CF!

EQCFG

ECFG

A = {a b c ∣x y z x = y}
B = {a b c ∣x y z x = z}

A ∩B = {a b c ∣x y z x = y ∧ x = z}

CS420 ☽ Acceptance, emptiness and equality tests ☽ Lecture 20 ☽ Tiago Cogumbreiro 26 / 26

