CS420

Introduction to the Theory of Computation

Lecture 17: PDA \iff CFG

Tiago Cogumbreiro
Today we will learn...

- Exercises on designing a PDA
- Convert a PDA into a CFG
- Convert a CFG into a PDA

Section 2.2
Supplementary material: Professor David Chiang's lecture notes [1] [2]; Professor Siu On Chan slides
Exercise 1
Exercise 1

1. aa is a palindrome
2. aba is a palindrome
3. bbb is a palindrome
4. \(\epsilon \) is a palindrome
5. a is a palindrome

Give a PDA that recognizes palindromes and show it accepts aba and rejects abb
Exercise palindrome

\[
\begin{align*}
\text{start} & \quad \rightarrow \quad q \quad \text{\(\epsilon, \epsilon \rightarrow \$$}\text{)} \\
q & \quad \rightarrow \quad q_1 \quad \text{\(\epsilon, \epsilon \rightarrow \epsilon \)} \quad \text{\(a, \epsilon \rightarrow \epsilon \)} \quad \text{\(b, \epsilon \rightarrow \epsilon \)} \\
q_1 & \quad \rightarrow \quad q_2 \quad \text{\(\epsilon, S \rightarrow \epsilon \)} \\
q_2 & \quad \rightarrow \quad q_3 \\
q_3 & \quad \rightarrow \quad q_1 \quad \text{\(a, a \rightarrow \epsilon \)} \quad \text{\(b, b \rightarrow \epsilon \)}
\end{align*}
\]
Accepts aba
Accepts aba

Diagram showing a PDA accepting the string aba. The diagram includes states and transitions labeled with symbols from the language aba. The initial state is q, and the final accepting state is q_3. Transitions are labeled with symbols a, b, and ϵ (epsilon).
Rejects abb
Rejets abb
Exercise 2

$L_2 = \{a^n b^{2n} \mid n \geq 0\}$

Give a PDA that recognizes L_2 and show it rejects aba and accepts abb
Exercise 2 solution
L_2 does not contain aba
L_2 does not contain aba
L_2 contains abb
L_2 contains abb
Context Free Languages
Main result

Context free languages

Theorem: Language L has a context free grammar if, and only if, L is recognized by some pushdown automaton.

Next

1. We show that from a CFG we can build an equivalent† PDA
2. We show that from a PDA we can build an equivalent† CFG

† Equivalence with respect to recognized languages. Let P be a PDA and C a CFG we say that P is equivalent to C (and vice versa) if, and only if, $L(P) = L(C)$
Converting a CFG into a PDA
Converting a CFG into a PDA

- (0) Push the sentinel $ to the stack
- (1) Push the initial variable S to the stack
- In a loop:
 - (2) Every rule $S \rightarrow w$ corresponds to popping S and pushing w (in reverse)
 - (3) Pop terminals from stack
 - (4) Empty stack means recognized

Example $L_3 = \{a^n b^n | n \geq 0\}$

$$S \rightarrow aSb | \epsilon$$

<table>
<thead>
<tr>
<th>PDA operation</th>
<th>Output</th>
<th>Accept?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0) $, \epsilon \rightarrow $</td>
<td>$</td>
<td></td>
</tr>
<tr>
<td>(1) $, \epsilon \rightarrow S$</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>(2) $, S \rightarrow aSb$</td>
<td>aSb$</td>
<td></td>
</tr>
<tr>
<td>(3) $, a \rightarrow \epsilon$</td>
<td>Sb$</td>
<td>a</td>
</tr>
<tr>
<td>(4) $, S \rightarrow aSb$</td>
<td>aSbb$</td>
<td>a</td>
</tr>
<tr>
<td>(5) $, a \rightarrow \epsilon$</td>
<td>Sbb$</td>
<td>aa</td>
</tr>
<tr>
<td>(6) $, S \rightarrow \epsilon$</td>
<td>bb$</td>
<td>aa</td>
</tr>
<tr>
<td>(7) $, b \rightarrow \epsilon$</td>
<td>b$</td>
<td>aab</td>
</tr>
<tr>
<td>(8) $, b \rightarrow \epsilon$</td>
<td>$</td>
<td>aabb</td>
</tr>
</tbody>
</table>
Overview

1. **Initial variable:** From the initial state q_1 push the initial variable onto the stack via ϵ and move to the loop state (q_2)

2. **Productions:** For each rule ($S \rightarrow aSb$), perform a multi-push edge via ϵ from q_2 back to q_2, by popping popping the variable of the rule S and performing a multi-push of the body aSb.

3. **Alphabet:** For each letter a of the grammar draw a self loop to q_2 that reads a and pops a from the stack

4. **Final transition:** Once the stack is empty transition to the final state q_3 via ϵ
aabb is in $L_3 = \{ a^n b^n \mid n \geq 0 \}$, show acceptance
aabb is in $L_3 = \{a^n b^n \mid n \geq 0\}$, show acceptance
Overview

1. The states q_1, q_2, q_3, q_4 are always in the converted PDA
2. States q_1 and q_2 push the sentinel and initial variable
3. The edge between q_3 and q_4 is always ϵ, $\$ \rightarrow \epsilon$
4. There is always a self loop for each letter in the alphabet of a, $a \rightarrow \epsilon$
5. The only difficulty is **generating the substitution rules**
How to encode $S \rightarrow aSb$?

(multi push)
Encoding multi-push productions

By example $X \rightarrow aYb$

1. reverse the production, example:
 $X \rightarrow aYb$ yields bYa.

2. Create one state R_i for each variable/terminal in the reversed string, each transition pushes a variable/terminal of the reversed string.

![Diagram of PDA transitions](image)

Note: In the book (and in my diagrams) I merge the first two transitions. This is equivalent to the above method; you can use either, as long as you do it correctly.
Exercise 3
Exercise 3

Convert the following grammar into a PDA

\[
\begin{align*}
A & \rightarrow 0A1 \mid B \\
B & \rightarrow 1B \mid \epsilon
\end{align*}
\]
Exercise 3

Convert the following grammar into a PDA

\[A \rightarrow 0A1 \mid B \]
\[B \rightarrow 1B \mid \epsilon \]
Converting a PDA into a CFG
Converting a PDA into a CFG

1. modify the PDA into a simplified PDA:
 - has a single accepting state
 - empties the stack before accepting
 - every transition is in one of these forms:
 - skips popping and pushes one symbol onto the stack: $\epsilon \rightarrow c$
 - pops one symbol off the stack and skips pushing: $c \rightarrow \epsilon$
Converting a PDA into a CFG

1. modify the PDA into a simplified PDA:
 - has a single accepting state
 - empties the stack before accepting
 - every transition is in one of these forms:
 - skips popping and pushes one symbol onto the stack: $\epsilon \rightarrow c$
 - pops one symbol off the stack and skips pushing: $c \rightarrow \epsilon$

2. given a simplified PDA build a CFG
 - $A_{qq} \rightarrow \epsilon$ if $q \in Q$
 - $A_{pq} \rightarrow A_{pr}A_{rq}$ if $p, q \in Q$
 - $A_{pq} \rightarrow aA_{rs}b$ if $(r, u) \in \delta(p, a, \epsilon)$ and $(q, \epsilon) \in \delta(s, b, u)$
Simplifying a PDA
Simplifying a PDA

Transformation 1: Has a single accepting state

Transformation 2: Empties the stack before accepting

\[\forall a \in \Sigma^+ : \epsilon, a \rightarrow \epsilon \]

† Notation \(\forall a \in \Sigma \) means that there will be one edge \(\epsilon, a \rightarrow \epsilon \) per \(a \in \Sigma \)
Simplifying a PDA

Transformation 3

Every transition is in one of these forms:

- skips popping and pushes one symbol onto the stack: $\epsilon \rightarrow c$
- pops one symbol off the stack and skips pushing: $c \rightarrow \epsilon$

Case 1

\[
\begin{align*}
q_1 \xrightarrow{a, b \rightarrow c} q_2 \\
\end{align*}
\]

\[
\begin{align*}
q_1 \xrightarrow{a, b \rightarrow \epsilon} q_3 \xrightarrow{\epsilon, \epsilon \rightarrow c} q_2 \\
\end{align*}
\]

Case 2

\[
\begin{align*}
q_1 \xrightarrow{a, \epsilon \rightarrow \epsilon} q_2 \\
\end{align*}
\]

\[
\begin{align*}
q_1 \xrightarrow{a, \epsilon \rightarrow b} q_3 \xrightarrow{\epsilon, b \rightarrow \epsilon} q_2 \\
\end{align*}
\]
Example 4

Simplified PDA

- single accepting state
- empties the stack before accepting
- every transition is in one of these forms:
 - $\epsilon \rightarrow c$
 - $c \rightarrow \epsilon$

Is it simplified?
Example 4

Simplified PDA

- single accepting state
- empties the stack before accepting
- every transition is in one of these forms:
 - $\epsilon \rightarrow c$
 - $c \rightarrow \epsilon$

Is it simplified?

No!

Diagram:

- Initial state: q
- Transitions:
 - $\epsilon, \epsilon \rightarrow \$
 - $a, \epsilon \rightarrow a$
 - $b, \epsilon \rightarrow$
 - $b, a \rightarrow$
 - $\epsilon, \$ \rightarrow \epsilon$

Diagram:

- States: q, q_1, q_2, q_3, q_4
- Transitions:
 - $\epsilon, \epsilon \rightarrow \$
 - $a, \epsilon \rightarrow a$
 - $b, \epsilon \rightarrow$
 - $\epsilon, \$ \rightarrow \epsilon$
Example 4

Not Simplified

Simplified
Example 4

Not Simplified

Simplified
Simplified PDA to CFG
Simplified PDA to CFG

Given a simplified PDA build a CFG

1. \(A_{qq} \rightarrow \epsilon \) if \(q \in Q \)
2. \(A_{pq} \rightarrow A_{pr} A_{rq} \) if \(p, r, q \in Q \)
3. \(A_{pq} \rightarrow a A_{rs} b \) if \((r, u) \in \delta(p, a, \epsilon) \) and \((q, \epsilon) \in \delta(s, b, u) \)

![Diagram of PDA to CFG conversion]

- \(p \) \(\rightarrow \) \(q \) \(\rightarrow \) \(r \) \(\rightarrow \) \(s \) \(\rightarrow \) \(q \)
- \(p \rightarrow \{a, \epsilon \rightarrow u\} \rightarrow \) \(r \) \(\rightarrow \) \(s \) \(\rightarrow \) \(q \)
- Transitions: For every transition

\(p \rightarrow \{a, \epsilon \rightarrow u\} \rightarrow r \) transitions: For every transition

\(s \rightarrow \{b, u \rightarrow \epsilon\} \rightarrow q \) transitions: For every transition

\(A_{pq} \rightarrow a A_{rs} b \)
Example 5

Balanced parenthesis that are wrapped inside an outermost parenthesis.

Is this PDA simplified?
Example 5

Balanced parenthesis that are wrapped inside an outermost parenthesis.

Is this PDA simplified?

Yes!
Example 5

Step 1: $A_{qq} \rightarrow \epsilon$ if $q \in Q$

Step 2: $A_{pq} \rightarrow A_{pr} A_{rq}$ if $p, r, q \in Q$

- $A_{11} \rightarrow \epsilon$
- $A_{22} \rightarrow \epsilon$
- $A_{33} \rightarrow \epsilon$
- $A_{44} \rightarrow \epsilon$
- $A_{1,2} \rightarrow A_{1,3} A_{3,2}$
- $A_{1,2} \rightarrow A_{1,4} A_{4,2}$
- $A_{1,3} \rightarrow A_{1,4} A_{4,3}$
- $A_{1,3} \rightarrow A_{1,2} A_{2,4}$
- $A_{2,1} \rightarrow A_{2,3} A_{3,1}$
- $A_{2,1} \rightarrow A_{2,4} A_{4,1}$
- $A_{2,3} \rightarrow A_{2,1} A_{1,3}$
- $A_{2,3} \rightarrow A_{2,4} A_{4,3}$
- $A_{2,4} \rightarrow A_{2,1} A_{1,4}$
- $A_{2,4} \rightarrow A_{2,3} A_{3,4}$
- $A_{3,1} \rightarrow A_{3,2} A_{2,1}$
- $A_{3,1} \rightarrow A_{3,2} A_{2,1}$
- $A_{3,2} \rightarrow A_{3,1} A_{1,2}$
- $A_{3,2} \rightarrow A_{3,4} A_{4,2}$
- $A_{3,4} \rightarrow A_{3,1} A_{1,4}$
- $A_{3,4} \rightarrow A_{3,2} A_{2,4}$
- $A_{4,1} \rightarrow A_{4,2} A_{2,1}$
- $A_{4,1} \rightarrow A_{4,3} A_{3,1}$
Example 5

Step 1: $A_{qq} \rightarrow \epsilon$ if $q \in Q$

Step 2: $A_{pq} \rightarrow A_{pr} A_{rq}$ if $p, r, q \in Q$

- $A_{4,2} \rightarrow A_{4,1} A_{1,2}$
- $A_{4,2} \rightarrow A_{4,3} A_{3,2}$
- $A_{4,3} \rightarrow A_{4,1} A_{1,3}$
- $A_{4,3} \rightarrow A_{4,2} A_{2,3}$
Example 5

New rules:

<table>
<thead>
<tr>
<th>Push</th>
<th>Pop</th>
<th>Intuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{1,2}$ → $oA_{22}c$</td>
<td>$A_{1,3}$ → $oA_{22}c$</td>
<td>Create a table for each letter being pushed/popped.</td>
</tr>
<tr>
<td>$A_{2,2}$ → $oA_{22}c$</td>
<td>$A_{2,3}$ → $oA_{22}c$</td>
<td>Pair each push with each pop.</td>
</tr>
</tbody>
</table>
Exercise 6

Simplify the PDA below

![Diagram of the PDA]
Exercise 6

Solution