Introduction to the Theory of Computation

Lecture 13: Deterministic Finite Automata

Tiago Cogumbreiro
Today we will learn...

- Deterministic Finite Automata (DFA)
- Implementing a DFA
- Converting NFAs into DFAs
- Practical applications of DFAs and NFAs
Finite Automata

a.k.a. finite state machine
A turnstile controller

Allows one-directional passage. Opens when the front sensor is triggered. It should remain open while any sensor is triggered, and then close once neither is triggered.

- **States**: open, close
- **Inputs**: front, rear, both, neither
Each state must have exactly one transition per element of the alphabet (all states must have same transition count)

Definition

- Graph-based diagram
- **Nodes**: called states; annotated with a name (Distinct names!)
- **Edges**: called transitions; annotated with inputs
- Initial state has an incoming edge (only one)
- Accepted nodes have a double circle (zero or more)
- Multiple inputs are comma separated

In the example: Two states: open, close. State close is an **accepting** state. State close is also the **initial** state
The controller of a turnstile

State transition

<table>
<thead>
<tr>
<th>(prev. state)</th>
<th>front</th>
<th>rear</th>
<th>both</th>
<th>neither</th>
</tr>
</thead>
<tbody>
<tr>
<td>close</td>
<td>open</td>
<td>close</td>
<td>close</td>
<td>close</td>
</tr>
<tr>
<td>open</td>
<td>open</td>
<td>open</td>
<td>open</td>
<td>close</td>
</tr>
</tbody>
</table>

from enum import *

class State(Enum): Open = 0; Close = 1

class Input(Enum): Neither = 0; Front = 1; Rear = 2; Both = 3

def state_transition(old_st, i):
 if old_st == State.Close and i == Input.Front: return State.Open
 if old_st == State.Open and i == Input.Neither: return State.Close
 return old_st
An automaton

An automaton receives a sequence of inputs, processes them, and outputs whether it accepts the sequence.

- **Input**: a string of inputs, and an initial state
- **Output**: accept or reject

Implementation example

```python
def automaton_accepts(inputs):
    st = State.Close
    for i in inputs:
        st = state_transition(st, i)
    return st is State.Close
```
An automaton acceptance examples

```python
>>> automaton_accepts([])
True
>>> automaton_accepts([Input.Front, Input.Neither])
True
>>> automaton_accepts([Input.Rear, Input.Front, Input.Front])
False
True
```
Formal definition of a Finite Automaton

Definition 1.5

A finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\) where

1. \(Q\) is a finite set called states
2. \(\Sigma\) is a finite set called alphabet
3. \(\delta : Q \times \Sigma \rightarrow Q\) is the transition function
 \((\delta\ \text{takes a state and an alphabet and produces a state})\)
4. \(q_0 \in Q\) is the start state
5. \(F \subseteq Q\) is the set of accepted states

A formal definition is a precise mathematical language. In this example, item declares a name and possibly some constraint, e.g., \(q_0 \in Q\) is saying that \(q_0\) must be in set \(Q\). These constraints are visible in the code in the form of assertions.
Formal declaration of our running example

Let the running example be the following finite automaton $M_{\text{turnstile}}$

$$(\{\text{Open, Close}\}, \{\text{Neither, Front, Rear, Both}\}, \delta, \text{Close}, \{\text{Close}\})$$

where

$$\delta(\text{Close, Front}) = \text{Open}$$
$$\delta(\text{Open, Neither}) = \text{Close}$$
$$\delta(q, i) = q$$

Facts

- $M_{\text{turnstile}}$ accepts [Front, Neither]
- $M_{\text{turnstile}}$ rejects [Rear, Front, Front]
- $M_{\text{turnstile}}$ accepts [Rear, Front, Rear, Neither, Rear]
Example

States?
Example

States? \(Q = \{q_1, q_2, q_3\} \)

Alphabet?
Example

States? \(Q = \{ q_1, q_2, q_3 \} \)
Alphabet? \(\Sigma = \{ 0, 1 \} \)
Transition table \(\delta \)?
Example

States? $Q = \{q_1, q_2, q_3\}$

Alphabet? $\Sigma = \{0, 1\}$

Transition table δ?

<table>
<thead>
<tr>
<th>prev</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1</td>
<td>q_1</td>
<td>q_2</td>
</tr>
<tr>
<td>q_2</td>
<td>q_3</td>
<td>q_2</td>
</tr>
<tr>
<td>q_3</td>
<td>q_3</td>
<td>q_2</td>
</tr>
</tbody>
</table>
Example

States? $Q = \{q_1, q_2, q_3\}$
Alphabet? $\Sigma = \{0, 1\}$
Transition table δ?

<table>
<thead>
<tr>
<th>(prev)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1</td>
<td>q_1</td>
<td>q_2</td>
</tr>
<tr>
<td>q_2</td>
<td>q_3</td>
<td>q_2</td>
</tr>
<tr>
<td>q_3</td>
<td>q_3</td>
<td>q_2</td>
</tr>
</tbody>
</table>

Finite Automaton:

$(\{q_1, q_2, q_3\}, \{0, 1\}, q_1, \{q_2\})$
Example

\[[1, 0, 1, 1] \]
Example

\[1, 0, 1, 1\]
Example

\[[1, 0, 1, 1] \]
Example

\[1, 0, 1, 1\]
Example

\[[1, 0, 1, 1] \]
What are the set of inputs accepted by this automaton?
What are the set of inputs accepted by this automaton?

Answer: Strings terminating in 1
The language of a machine

Definition: language of a machine

1. We define $L(M)$ to be the set of all strings accepted by finite automaton M.
2. Let $A = L(M)$, we say that the finite automaton M recognizes the set of strings A.
The language of a machine

Definition: language of a machine

1. We define $L(M)$ to be the set of all strings accepted by finite automaton M.
2. Let $A = L(M)$, we say that the finite automaton M recognizes the set of strings A.

Notes

- The language is the set of all possible alphabet-sequences recognized by a finite automaton
- Since $L(M)$ is a total function, then the language recognized by a machine always exists and is unique
- A language may be empty
- We cannot write a program that returns the language of an arbitrary finite automaton. Why? Because the language set may be infinite. How could a program return Σ^*?
Are all DFAs also NFAs?
Are all DFAs also NFAs?

- **Yes**, DFAs can be trivially converted into NFAs. The state diagram of a DFA is equivalent to the same state diagram as an NFA.
- We only need to slightly change the transition function to handle ϵ inputs.
Are all NFAs also DFAs?
Are all NFAs also DFAs?

Yes!
Theorem 1.39

Every NFA has an equivalent DFA

- We study the algorithm that converts an NFA into a DFA
- **Tip:** understanding the implementation of the acceptance algorithm, helps understanding the conversion and vice-versa

Intuition

- **States:**
Theorem 1.39

Every NFA has an equivalent DFA

- We study the algorithm that converts an NFA into a DFA
- Tip: understanding the implementation of the acceptance algorithm, helps understanding the conversion and vice-versa

Intuition

- **States:** Each state becomes a set of all possible concurrent states of the NFA
- **Alphabet:**
Theorem 1.39

Every NFA has an equivalent DFA

- We study the algorithm that converts an NFA into a DFA
- **Tip:** understanding the implementation of the acceptance algorithm, helps understanding the conversion and vice-versa

Intuition

- **States:** Each state becomes a set of all possible concurrent states of the NFA
- **Alphabet:** same alphabet
- **Initial state:**
Theorem 1.39

Every NFA has an equivalent DFA

- We study the algorithm that converts an NFA into a DFA
- **Tip:** understanding the implementation of the acceptance algorithm, helps understanding the conversion and vice-versa

Intuition

- **States:** Each state becomes a set of all possible concurrent states of the NFA
- **Alphabet:** same alphabet
- **Initial state:** The state that consists of an epsilon-step on the initial state.
- **Transition:**
Theorem 1.39

Every NFA has an equivalent DFA

- We study the algorithm that converts an NFA into a DFA
- **Tip:** understanding the implementation of the acceptance algorithm, helps understanding the conversion and vice-versa

Intuition

- **States:** Each state becomes a set of all possible concurrent states of the NFA
- **Alphabet:** same alphabet
- **Initial state:** The state that consists of an epsilon-step on the initial state.
- **Transition:** One input-step followed by one epsilon-step
Are all NFAs also DFAs?

```python
def nfa_to_dfa(nfa):
    def transition(q, c):
        return nfa.epsilon(nfa.multi_transition(q, c))

def accept_state(qs):
    for q in qs:
        if nfa.accepted_states(q):
            return True
    return False

return DFA(nfa.alphabet, transition, nfa.epsilon({nfa.start_state}), accept_state)
```
Nondeterministic transition δ_U

$$\delta_U(R, a) = \bigcup_{q \in R} \delta(r, a)$$

```python
def multi_transition(self, states, input):
    new_states = set()
    for st in states:
        new_states.update(self.transition_func(st, input))
    return set(new_states)
```

(See Theorem 1.39; in the book δ_U is δ')
Epsilon transition

\[E(R) = \{ q \mid q \text{ can be reached from } R \text{ by travelling along 0 or more } \epsilon \text{ arrows} \} \]

```python
def epsilon(self, states):
    states = set(states)
    while True:
        count = len(states)
        states.update(self.transition(states, None))
        if count == len(states):
            return states
```

(See Theorem 1.39)
Theorem 1.39

Every NFA has an equivalent DFA

Formally, we introduce function \texttt{nfa2dfa} that converts an NFA into a DFA.

\[
\text{nfa2dfa}((Q, \Gamma, \delta, q_1, F')) = (\mathcal{P}(Q), \Gamma, \delta_D, E(q_1), F_D)
\]

where

- \(\delta_D(Q, c) = E(\delta(\mathcal{P}(Q), c))\)
- \(F_D = \{Q \mid Q \cap F \neq \emptyset\}\)
<table>
<thead>
<tr>
<th>States</th>
<th>Input</th>
<th>States</th>
<th>Done</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_1}</td>
<td>a</td>
<td>{q_1, q_2, q_3}</td>
<td></td>
</tr>
<tr>
<td>{q_1}</td>
<td>b</td>
<td>{q_1}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_2, q_3}</td>
<td>a</td>
<td>{q_1}</td>
<td></td>
</tr>
<tr>
<td>{q_1, q_2, q_3}</td>
<td>b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Deterministic Finite Automata

States	**Input**	**States**	**Done**
{q_1} | a | {q_1, q_2, q_3} | x
{q_1} | b | {q_1} | x
{q_1, q_2, q_3} | a | {q_1, q_2, q_3, q_4} |
{q_1, q_2, q_3} | b | {q_1, q_3} |
{q_1, q_2, q_3, q_4} | a |
{q_1, q_2, q_3, q_4} | b |
{q_1, q_3} | a |
{q_1, q_3} | b |
<table>
<thead>
<tr>
<th>States</th>
<th>Input</th>
<th>States</th>
<th>Done</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_1}</td>
<td>a</td>
<td>{q_1, q_2, q_3}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1}</td>
<td>b</td>
<td>{q_1}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_2, q_3}</td>
<td>a</td>
<td>{q_1, q_2, q_3, q_4}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_2, q_3}</td>
<td>b</td>
<td>{q_1, q_3}</td>
<td></td>
</tr>
<tr>
<td>{q_1, q_2, q_3, q_4}</td>
<td>a</td>
<td>{q_1, q_2, q_3, q_4}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_2, q_3, q_4}</td>
<td>b</td>
<td>{q_1, q_3, q_4}</td>
<td></td>
</tr>
<tr>
<td>{q_1, q_3}</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{q_1, q_3}</td>
<td>b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{q_1, q_3, q_4}</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{q_1, q_3, q_4}</td>
<td>b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>States</td>
<td>Input</td>
<td>States</td>
<td>Done</td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
<td>----------------</td>
<td>------</td>
</tr>
<tr>
<td>{q_1}</td>
<td>a</td>
<td>{q_1, q_2, q_3}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1}</td>
<td>b</td>
<td>{q_1}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_2, q_3}</td>
<td>a</td>
<td>{q_1, q_2, q_3, q_4}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_2, q_3}</td>
<td>b</td>
<td>{q_1, q_3}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_2, q_3, q_4}</td>
<td>a</td>
<td>{q_1, q_2, q_3, q_4}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_2, q_3, q_4}</td>
<td>b</td>
<td>{q_1, q_3, q_4}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_3}</td>
<td>a</td>
<td>{q_1, q_2, q_3, q_4}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_3}</td>
<td>b</td>
<td>{q_1}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_3, q_4}</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{q_1, q_3, q_4}</td>
<td>b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>States</td>
<td>Input</td>
<td>States</td>
<td>Done</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>{q_1}</td>
<td>a</td>
<td>{q_1, q_2, q_3}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1}</td>
<td>b</td>
<td>{q_1}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_2, q_3}</td>
<td>a</td>
<td>{q_1, q_2, q_3, q_4}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_2, q_3}</td>
<td>b</td>
<td>{q_1, q_3}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_2, q_3, q_4}</td>
<td>a</td>
<td>{q_1, q_2, q_3, q_4}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_2, q_3, q_4}</td>
<td>b</td>
<td>{q_1, q_3, q_4}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_3}</td>
<td>a</td>
<td>{q_1, q_2, q_3, q_4}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_3}</td>
<td>b</td>
<td>{q_1}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_3, q_4}</td>
<td>a</td>
<td>{q_1, q_2, q_3, q_4}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_3, q_4}</td>
<td>b</td>
<td>{q_1, q_4}</td>
<td></td>
</tr>
<tr>
<td>{q_1, q_4}</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{q_1, q_4}</td>
<td>b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>States</td>
<td>Input</td>
<td>States</td>
<td>Done</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>{q_1}</td>
<td>a</td>
<td>{q_1, q_2, q_3}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1}</td>
<td>b</td>
<td>{q_1}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_2, q_3}</td>
<td>a</td>
<td>{q_1, q_2, q_3, q_4}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_2, q_3}</td>
<td>b</td>
<td>{q_1, q_3}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_2, q_3, q_4}</td>
<td>a</td>
<td>{q_1, q_2, q_3, q_4}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_2, q_3, q_4}</td>
<td>b</td>
<td>{q_1, q_3, q_4}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_3}</td>
<td>a</td>
<td>{q_1, q_2, q_3, q_4}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_3}</td>
<td>b</td>
<td>{q_1}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_3, q_4}</td>
<td>a</td>
<td>{q_1, q_2, q_3, q_4}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_3, q_4}</td>
<td>b</td>
<td>{q_1, q_4}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_4}</td>
<td>a</td>
<td>{q_1, q_2, q_3, q_4}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_4}</td>
<td>b</td>
<td>{q_1, q_4}</td>
<td>x</td>
</tr>
</tbody>
</table>
Exercise
Producing a DFA from an NFA
The initial state is the set of all states in the NFA that are reachable from q_1 via ϵ transitions plus q_1.

Producing a DFA from an NFA
For each input in \(\Sigma \) range we must draw a transition to a target state.
A target state is found by taking an input, say \(a \), and doing an input+epsilon step on each sub-state.
First, input a we find all reachable states (via input+epsilon state) that start from either q_1 or q_3.

- From q_1 via a we get $\{q_1, q_2, q_3\}$
- From q_3 via a we get \emptyset
- Result state is $\{q_1, q_2, q_3\} \cup \emptyset = \{q_1, q_2, q_3\}$
Producing a DFA from an NFA

Second, input b we find all reachable states (via input+epsilon state) that start from either q_1 or q_3.

- From q_1 via b we get \emptyset
- From q_3 via b we get $\{q_4\}$
- Result state is $\emptyset \cup \{q_4\} = \{q_4\}$
Producing a DFA from an NFA

For inputs a and b we find all reachable states (via input+epsilon state) that start from q_4:
- From q_4 via a we get \emptyset, so the result state is \emptyset
- From q_4 via b we get \emptyset, so the result state is \emptyset
Producing a DFA from an NFA

Transition from \(\{q_1, q_2, q_3\} \) via \(a \)?

- We know with \(\{q_1, q_3\} \) with \(a \) we reach \(\{q_1, q_2, q_3\} \)
- From \(q_2 \) with \(a \) we reach \(\{q_3\} \)
- Thus, result state is \(\{q_1, q_2, q_3\} \cup \{q_3\} = \{q_1, q_2, q_3\} \) (self-loop)
Producing a DFA from an NFA

Transition from \(\{ q_1, q_2, q_3 \} \) via \(b \)?

- We know with \(\{ q_1, q_3 \} \) with \(b \) we reach \(\{ q_4 \} \)
- From \(q_2 \) with \(b \) we reach \(\{ q_2 \} \)
- Thus, result state is \(\{ q_4 \} \cup \{ q_2 \} = \{ q_2, q_4 \} \)
Producing a DFA from an NFA

Transition from \(\{q_2, q_4\} \) via \(a \)?

- From \(q_2 \) with \(a \) we reach \(\{q_1, q_3\} \)
- From \(q_4 \) with \(a \) we reach \(\emptyset \)
- Thus, result state is \(\{q_1, q_3\} \cup \emptyset = \{q_1, q_3\} \)
Producing a DFA from an NFA

Transition from \(\{q_2, q_4\} \) via b?

- From \(q_2 \) with b we reach \(\{q_2\} \)
- From \(q_4 \) with b we reach \(\emptyset \)
- Thus, result state is \(\{q_2\} \cup \emptyset = \{q_2\} \)
Transition from \{q_2\} via a?

- From \(q_2\) with a we reach \{q_1, q_3\} (result state)
Producing a DFA from an NFA

Transition from \(\{q_2\} \) via \(b \)?
- From \(q_2 \) with \(b \) we reach \(\{q_2\} \) (result state; self loop)
State $\{\}$ (also known as \emptyset) is a sink state, so we draw a self loop for every input in Σ.
Applications of automaton

- DFAs are crucial to implement regular expression matching by converting REGEX → NFA → DFA
- DFAs are simple to implement and fast to run
- DFAs can be minimized
 Any regular language has a minimal DFA, which is defined as a DFA with the smallest number of states that recognizes that language.
Use Case 1: implementing regex

| Rust standard library's regular expresson implementation (source) |

```rust
struct ExecReadOnly {
    /// The original regular expressions given by the caller to compile.
    res: Vec<String>,
    /// A compiled program that is used in the NFA simulation and backtracking.
    /// It can be byte-based or Unicode codepoint based.
    nfa: Program,
    /// A compiled byte based program for DFA execution. This is only used
    /// if a DFA can be executed. (Currently, only word boundary assertions are
    /// not supported.) Note that this program contains an embedded `.*?`
    /// preceding the first capture group, unless the regex is anchored at the
    /// beginning.
    dfa: Program,
}
```
Use Case 2: DFA/NFA

Using a DFA/NFA to structure hardware usage
Use Case 2: DFA/NFA

Using a DFA/NFA to structure hardware usage

- Arduino is an open-source hardware to design **microcontrollers**
- Programming can be difficult, because it is highly concurrent
- Finite-state-machines structures the logical states of the hardware
- **Input**: a string of hardware events
- String acceptance is not interesting in this domain

Example

- The FSM represents the logical view of a micro-controller with a light switch
Use Case 2

Declare states

```c
#include "Fsm.h"

// Connect functions to a state
State state_light_on(on_light_on_enter, NULL, &on_light_on_exit);
// Connect functions to a state
State state_light_off(on_light_off_enter, NULL, &on_light_off_exit);
// Initial state
Fsm fsm(state_light_off);
```

Source: platformio.org/lib/show/664/arduino-fsm
Use Case 2

Declare transitions

```cpp
// standard arduino functions
void setup() {
    Serial.begin(9600);

    fsm.add_transition(&state_light_on, &state_light_off,
                        FLIP_LIGHT_SWITCH,
                        &on_trans_light_on_light_off);
    fsm.add_transition(&state_light_off, &state_light_on,
                        FLIP_LIGHT_SWITCH,
                        &on_trans_light_off_light_on);
}
```

Source: platformio.org/lib/show/664/arduino-fsm
Use Case 2

Code that runs on before/after states

```c
// Transition callback functions
void on_light_on_enter() {
    Serial.println("Entering LIGHT_ON");
}

void on_light_on_exit() {
    Serial.println("Exiting LIGHT_ON");
}

void on_light_off_enter() {
    Serial.println("Entering LIGHT_OFF");
}

// ...
```

Source: platformio.org/lib/show/664/arduino-fsm