CS420

Introduction to the Theory of Computation

Lecture 9: Power, Kleene star, equivalence

Tiago Cogumbreiro
Today we will learn...

- Void
- All
- Power
- Kleene star
- Language equivalence
The void language
Void

The language that rejects all strings.
Void

The language that rejects all strings.

Definition $\text{Void } w := \text{False}.$

Correction properties

1. Show every word is rejected by Void
The all language
All

- Language that accepts all strings
Language that accepts all strings

Definition \(\text{All} (w: \text{word}) := \text{True}. \)

Correction properties

1. Show that any word is accepted by All.
Solve the following exercises

1. $L_1 \cup \{\epsilon\} =$

<table>
<thead>
<tr>
<th>Coq</th>
<th>Notation</th>
<th>Math</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nil</td>
<td>{}</td>
<td>{\epsilon}</td>
</tr>
<tr>
<td>Char c</td>
<td>c</td>
<td>{c}</td>
</tr>
<tr>
<td>Union L1 L2</td>
<td>L1 U L2</td>
<td>$L_1 \cup L_2$</td>
</tr>
<tr>
<td>App L1 L2</td>
<td>L1 \gg L2</td>
<td>$L_1 \cdot L_2$</td>
</tr>
<tr>
<td>Void</td>
<td>\emptyset</td>
<td>Σ^*</td>
</tr>
</tbody>
</table>

- $L_1 = \{[0], [1], [2]\}$
- $L_2 = \{[3], [4]\}$
Solve the following exercises

1. \(L_1 \cup \{\epsilon\} = \{[0], [1], [2], \epsilon\}\)

2. \(L_1 \cup L_2 =\)

- \(L_1 = \{[0], [1], [2]\}\)
- \(L_2 = \{[3], [4]\}\)
Solve the following exercises

1. $L_1 \cup \{\epsilon\} = \{[0], [1], [2], \epsilon\}$
2. $L_1 \cup L_2 = \{[0], [1], [2], [3], [4]\}$
3. $L_1 \cdot L_2 =$

- $L_1 = \{[0], [1], [2]\}$
- $L_2 = \{[3], [4]\}$
Exercises

<table>
<thead>
<tr>
<th>Coq</th>
<th>Notation</th>
<th>Math</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nil</td>
<td>{\epsilon}</td>
<td></td>
</tr>
<tr>
<td>Char c</td>
<td>c</td>
<td>{c}</td>
</tr>
<tr>
<td>Union L1 L2</td>
<td>L1 U L2</td>
<td>L_1 \cup L_2</td>
</tr>
<tr>
<td>App L1 L2</td>
<td>L1 \cdot L2</td>
<td>L_1 \cdot L_2</td>
</tr>
<tr>
<td>Void</td>
<td>\emptyset</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>\Sigma^*</td>
<td></td>
</tr>
</tbody>
</table>

- \(L_1 = \{[0], [1], [2]\} \)
- \(L_2 = \{[3], [4]\} \)

Solve the following exercises

1. \(L_1 \cup \{\epsilon\} = \{[0], [1], [2], \epsilon\} \)
2. \(L_1 \cup L_2 = \{[0], [1], [2], [3], [4]\} \)
3. \(L_1 \cdot L_2 = \{[0, 3], [0, 4], [1, 3], [1, 4], [2, 4], [2, 5]\} \)
4. \(L_2 \cdot \{\epsilon\} = \)
Exercises

<table>
<thead>
<tr>
<th>Coq</th>
<th>Notation</th>
<th>Math</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nil</td>
<td>{ε}</td>
<td></td>
</tr>
<tr>
<td>Char c</td>
<td>c</td>
<td>{c}</td>
</tr>
<tr>
<td>Union L1 L2</td>
<td>L1 U L2</td>
<td>L1 ∪ L2</td>
</tr>
<tr>
<td>App L1 L2</td>
<td>L1 >> L2</td>
<td>L1 ⋅ L2</td>
</tr>
<tr>
<td>Void</td>
<td>∅</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>Σ*</td>
<td></td>
</tr>
</tbody>
</table>

- $L_1 = \{[0], [1], [2]\}$
- $L_2 = \{[3], [4]\}$

Solve the following exercises

1. $L_1 \cup \{\epsilon\} = \{[0], [1], [2], \epsilon\}$
2. $L_1 \cup L_2 = \{[0], [1], [2], [3], [4]\}$
3. $L_1 \cdot L_2 = \{[0, 3], [0, 4], [1, 3], [1, 4], [2, 4], [2, 5]\}$
4. $L_2 \cdot \{\epsilon\} = L_2$
5. $L_1 \cup \Sigma^* =$
Exercises

<table>
<thead>
<tr>
<th>Coq</th>
<th>Notation</th>
<th>Math</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nil</td>
<td>{}</td>
<td>{\epsilon}</td>
</tr>
<tr>
<td>Char c</td>
<td>c</td>
<td>{c}</td>
</tr>
<tr>
<td>Union L1 L2</td>
<td>L1 ∪ L2</td>
<td>\L_1 ∪ \L_2</td>
</tr>
<tr>
<td>App L1 L2</td>
<td>L1 > L2</td>
<td>\L_1 \cdot \L_2</td>
</tr>
<tr>
<td>Void</td>
<td>∅</td>
<td>\emptyset</td>
</tr>
<tr>
<td>All</td>
<td></td>
<td>\Sigma^*</td>
</tr>
</tbody>
</table>

- \L_1 = \{[0], [1], [2]\}
- \L_2 = \{[3], [4]\}

Solve the following exercises

1. \L_1 ∪ \{\epsilon\} = \{[0], [1], [2], \epsilon\}
2. \L_1 ∪ \L_2 = \{[0], [1], [2], [3], [4]\}
3. \L_1 \cdot \L_2 = \{[0, 3], [0, 4], [1, 3], [1, 4], [2, 4], [2, 5]\}
4. \L_2 \cdot \{\epsilon\} = \L_2
5. \L_1 ∪ \Sigma^* = \Sigma^*
6. \L_2 ∪ \emptyset = \emptyset
Exercises

<table>
<thead>
<tr>
<th>Coq</th>
<th>Notation</th>
<th>Math</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nil</td>
<td>{\epsilon}</td>
<td>L_1 \cup {\epsilon} = {[0], [1], [2], \epsilon}</td>
</tr>
<tr>
<td>Char c</td>
<td>c</td>
<td>L_1 \cup L_2 = {[0], [1], [2], [3], [4]}</td>
</tr>
<tr>
<td>Union L1 L2</td>
<td>L_1 \cup L_2</td>
<td>L_1 \cup L_2 = {[0], [1], [2], [3], [4]}</td>
</tr>
<tr>
<td>App L1 L2</td>
<td>L_1 \cdot L_2</td>
<td>L_1 \cdot L_2 = {[0, 3], [0, 4], [1, 3], [1, 4], [2, 4], [2, 5]}</td>
</tr>
<tr>
<td>Void</td>
<td>\emptyset</td>
<td>L_2 \cdot \emptyset = L_2</td>
</tr>
<tr>
<td>All</td>
<td>\Sigma^*</td>
<td>L_2 \cup \Sigma^* = \Sigma^*</td>
</tr>
</tbody>
</table>

- $L_1 = \{[0], [1], [2]\}$
- $L_2 = \{[3], [4]\}$

Solve the following exercises

1. $L_1 \cup \{\epsilon\} = \{[0], [1], [2], \epsilon\}$
2. $L_1 \cup L_2 = \{[0], [1], [2], [3], [4]\}$
3. $L_1 \cdot L_2 = \{[0, 3], [0, 4], [1, 3], [1, 4], [2, 4], [2, 5]\}$
4. $L_2 \cdot \{\epsilon\} = L_2$
5. $L_1 \cup \Sigma^* = \Sigma^*$
6. $L_2 \cup \emptyset = L_2$
7. $L_2 \cdot \emptyset =$
Exercises

<table>
<thead>
<tr>
<th>Coq</th>
<th>Notation</th>
<th>Math</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nil</td>
<td>{\epsilon}</td>
<td>{\epsilon}</td>
</tr>
<tr>
<td>Char c</td>
<td>c</td>
<td>{c}</td>
</tr>
<tr>
<td>Union L1 L2</td>
<td>L1 \cup L2</td>
<td>L_1 \cup L_2</td>
</tr>
<tr>
<td>App L1 L2</td>
<td>L1 \gg L2</td>
<td>L_1 \cdot L_2</td>
</tr>
<tr>
<td>Void</td>
<td>\emptyset</td>
<td>\Sigma^*</td>
</tr>
<tr>
<td>All</td>
<td></td>
<td>\Sigma^*</td>
</tr>
</tbody>
</table>

- \(L_1 = \{[0], [1], [2]\}\)
- \(L_2 = \{[3], [4]\}\)

Solve the following exercises

1. \(L_1 \cup \{\epsilon\} = \{[0], [1], [2], \epsilon\}\)
2. \(L_1 \cup L_2 = \{[0], [1], [2], [3], [4]\}\)
3. \(L_1 \cdot L_2 = \{[0, 3], [0, 4], [1, 3], [1, 4], [2, 4], [2, 5]\}\)
4. \(L_2 \cdot \{\epsilon\} = L_2\)
5. \(L_1 \cup \Sigma^* = \Sigma^*\)
6. \(L_2 \cup \emptyset = L_2\)
7. \(L_2 \cdot \emptyset = \emptyset\)
The power operator for languages
The power operator for languages

- $L^{n+1} = L \cdot L^n$
- $L^0 = \{\epsilon\}$

Example

- $L = \{[0], [1], [2]\}$
- $L^0 = \{\epsilon\}$
- $L^1 = L \cdot \{\epsilon\} = L$
- $L^2 = L \cdot L = \{[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]\}$
Implementing power

Inductive Pow (L:language) : nat → word → Prop :=
| pow_nil: Pow L 0 nil |
| pow_cons: forall n w1 w2 w3, In w2 (Pow L n) → In w1 L → w3 = w1 ++ w2 → Pow L (S n) w3.

Rules in the form of:

\[
\frac{P_1 \quad P_2 \quad P_3}{Q}
\]

Are read as: If \(P_1 \text{ and } P_2 \text{ and } P_3 \) all hold, then we have \(Q \).
Exercise

Require Import Coq.Lists.List.
From Turing Require Import Lang.
From Turing Require Import Util.
Import Lang.Examples.
Import LangNotations.
Import ListNotations.
Open Scope lang_scope.
Open Scope char_scope.

Lemma in_aaa:
 In ["a"; "a"; "a"] (Pow "a" 3).
Proof.
Qed.

Lemma pow_char_in_inv:
 forall c n w,
 In w (Pow (Char c) n) ->
 w = Util.pow1 c n.
Proof.
Qed.
Kleene operator
Kleene operator

\[L^* = L^0 \cup L^1 \cup L^2 \cup L^3 \cup \ldots \]

Inductive definition

\[
\frac{w \in L^n}{w \in L^*}
\]

Wait, what is \(n \)?

Any \(n \) will do. If you can build a proof object such that \(w \in L^n \), then \(w \in L^* \).

Does this mean that there is only one \(n \)? Say, \(L^* = L^{1000} \)?

NO it does not. Each word membership will have its possibly distinct \(n \).

Example: \(L = [a] \), we have that \(\epsilon \in L^0 \) and that \([a, a] \in L^2 \), thus \(\epsilon \in L^* \) and \([a, a] \in L^* \).
Lemma in_aaa_2:
In ["a"; "a"; "a"] (Star "a").

Proof.
Language Equivalence
Language equivalence (equality)

- Mathematically, we write $L_1 = L_2$ to mean that two languages are equal.
- How do you prove language equality?
Language equivalence (equality)

- Mathematically, we write $L_1 = L_2$ to mean that two languages are equal.
- How do you prove language equality?
- You have to show that all words in L_1 are also in L_2 and vice-versa.
Language equivalence in Coq

Definition

\[\text{Equiv} \ (L1 \ L2: \text{language}) := \forall w, \ L1 \ w \leftrightarrow L2 \ w. \]

Show that \text{Vowel} is equivalent to previous example

Lemma \text{vowel	extunderscore eq}:

\[\text{Vowel} \ = \ (\text{Char} \ "a" \ U \ \text{Char} \ "e" \ U \ \text{Char} \ "i" \ U \ \text{Char} \ "o" \ U \ \text{Char} \ "u"). \]

Proof.
Language equivalence in Coq

Definition Equiv (L1 L2:language) := forall w, L1 w ↔ L2 w.

Show that Vowel is equivalent to previous example

Lemma vowel_eq:

Vowel == (Char "a" U Char "e" U Char "i" U Char "o" U Char "u").

Proof.

apply vowel_iff.

Qed.
Exercise

Show that Void is a neutral element in union.

Lemma union_l_void:
 \forall L, L \cup \text{Void} = L.
Exercise

Show that Void is a neutral element in union.

Lemma union_l_void:
 forall L,
 L U Void == L.

Proof.
 split; intros.
 - destruct H. {
 assumption.
 }
 apply not_in_void in H.
 contradiction.
 - left.
 assumption.
Qed.
Exercise

Show that Void is an absorbing element in concatenation.

Lemma app_l Void:
 \(\forall L, L \gg Void = Void \).
Exercise

Show that `Void` is an absorbing element in concatenation.

Lemma `app_l_void`:

```latex
forall L, L \triangleright Void = Void.
```

Proof.

```latex
unfold App; split; intros.
- destruct H as (w1, (w2, (Ha, (Hb, Hc)))).
  subst.
  apply not_in_void in Hc.
  contradiction.
- apply not_in_void in H.
  contradiction.
Qed.
```
Exercise

A language that accepts any words that consists of two vowels
Exercise

A language that accepts any words that consists of two vowels

Definition \(\text{TwoVowels} := \text{Vowel} \rightarrow \text{Vowel}. \)

Show that \(['"a"; "e"]\) is in TwoVowels
Exercise

A language that accepts any words that consists of two vowels

Definition TwoVowels := Vowel >> Vowel.

Show that ['"a"'; '"e"'] is in TwoVowels

Goal In ['"a"'; '"e"'] (Vowel >> Vowel).

Proof.
Exercise

A language that accepts any words that consists of two vowels

Definition TwoVowels := Vowel >> Vowel.

Show that ["a"; "e"] is in TwoVowels

Goal In ["a"; "e"] (Vowel >> Vowel).

Proof.

unfold App.
exists ["a"], ["e"]. (* Existential in the goal *)
split. { reflexivity. }
split. { left. reflexivity. }
right. left. reflexivity.
Qed.
Exercise

What words are accepted by L2?

Definition $L_2 := \text{All} \rightarrow \text{Char} \ "a".$
Exercise

Rewrite Vowels to use only language operators.
Exercise

Rewrite Vowels to use only language operators.

Definition Vowels2 := Char "a" U Char "e" U Char "i" U Char "o" U Char "u".
Lemma \(\text{vowel_length} \):

\[
\forall w, \quad \text{Vowel } w \rightarrow \text{length } w = 1.
\]
Exercise

Lemma `vowel_length`:

- `forall w, Vowel w -> length w = 1.`

Proof.

`intros.`

`destruct H as [H|[H|[H|[H|[H|]]]]]; subst; reflexivity.`

Qed.
Exercise

Goal forall w, $(\text{Vowel} \implies \text{Vowel}) w \implies \text{length } w = 2$.
Exercise

Goal for all \(w \), \((\text{Vowel} \implies \text{Vowel})\ w \rightarrow \text{length } w = 2\).

Proof.
- intros.
- unfold App in *.
- destruct \(H \) as \((w1, (w2, (Ha, (Hb, Hc))))\). (* Existential in hypothesis *)
- subst. apply vowel_length in Hb. apply vowel_length in Hc.
- SearchAbout (length(_ ++ _)). (* Search for lemmas *)
- rewrite app_length. rewrite Hb. rewrite Hc. reflexivity.
Qed.
Exercise

Show that all strings are rejected by Void.
Exercise

Show that all strings are rejected by Void.

Lemma not_in_void:
 forall w,
 ~ In w Void.

Proof.
 intros.
 intros N.
 inversion N.
Qed.