CS420

Introduction to the Theory of Computation

Lecture 8: Formal languages

Tiago Cogumbreiro

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

Today we will learn... ?/11

e A summary on module 1, intro do module 2
e Formal languages
e Alibrary of languages

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

A little taste of dependent types ?/11

th.

i ‘%/5

Sept27-28,2018

thestrangeloop.com

by David Christiansen. URL: www . youtube .com/watch?v=VxINoKFm-S4

I Note: > isexists, U isProp,Ilis forall

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

https://www.youtube.com/watch?v=VxINoKFm-S4
https://www.youtube.com/watch?v=VxINoKFm-S4

What have we learned in Module 17 ?/11

1. A programming language to systematically prove logical facts (Coq)
o Dependently-typed language
o |Inductive types
o |Inductive propositions
o Recursion and the connection to proofs by induction

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

What have we learned in Module 17 ?/11

1. A programming language to systematically prove logical facts (Coq)
Dependently-typed language
Inductive types
Inductive propositions
Recursion and the connection to proofs by induction
2. Learn from the ground up, by assuming nothing
o We defined natural numbers, lists
o We defined operations on natural numbers, lists (eg, +, -, *)

o We proved facts about natural numbers, lists (eg, addition is commutative,
associative, etc)

o

o

o)

o

CS420 D Formallanguages) Lecture8) Tiago Cogumbreiro

What have we learned in Module 17 ?/11

1. A programming language to systematically prove logical facts (Coq)
Dependently-typed language
Inductive types
Inductive propositions
Recursion and the connection to proofs by induction
2. Learn from the ground up, by assuming nothing
o We defined natural numbers, lists
o We defined operations on natural numbers, lists (eg, +, -, *)

o We proved facts about natural numbers, lists (eg, addition is commutative,
associative, etc)

3. A better understanding of proofs
o We can look at a theorem and intuit a proof structure (case analys?, induction?)
o We can even prove some facts like mindless robots (brute force proofs)

o

o

o)

o

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

Where are proof assistants used? dhass

e Industry
e Academy
e Education

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

Where are proof assistants used? ?/11

Industry

e CompCertisa C99 compiler written in Coq that is proved correct:
The behavior of the output (machine code) is equivalent to that o the source code (C99).

e CompCertis used in avionics and automotive industries

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

Where are proof assistants used? ?/11

Academy

Programming Language theory
Parallel Programming theory
Networks and distributed systems
Cryptography

Math (geometry)

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

What is programming language theory? ?/11

| Programming Language theory is the cornerstone of computer science

This fields that studies: Related fields

o abstractions of computation
(programming languages, DSLs, APls, . .
operating systems, distributed systems) * Software Engineering

» PL design & implementation: * DevOps (automation, DSLs)
compilers, interpreters

e Logic

) Who hires PLT scientists?
o quality assurance of code
(code analyzers, linters, bug finder) Facebook (Automated fault-finding and
o correctness of algorithms fixing at Facebook) (ReasonML), Microsoft
(verification) (Thinking above the code) (C#), Google

(Concurrency is not parallelism) (Go, Dart),
Amazon (Use of formal methods at AWS),
NVidia, Intel, ...

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

https://www.youtube.com/watch?v=CbQ6bJlOU7A
https://www.youtube.com/watch?v=-4Yp3j_jk8Q
https://www.youtube.com/watch?v=cN_DpYBzKso
https://lamport.azurewebsites.net/tla/formal-methods-amazon.pdf

Software Verification Lab ?/11

umb-svl.gitlab.io

We model the behavior of intricate systems

 We identify/prove in which cases such intricate systems fail
(eg, data-races being the root causes of deadlocks)

e We build tools that help intricate systems fail less
(eg, detecting deadlocks in distributed programs)

Why?

o To tame other people's technology — Marianne Bellotti
e To find bugs without running or even looking at the code — Jay Parlar

CS420 D Formallanguages) Lecture8) Tiago Cogumbreiro

https://umb-svl.gitlab.io/
http://dx.doi.org/10.1145/3143359
http://dx.doi.org/10.1145/3229060
https://www.youtube.com/watch?v=oMSmkRGzQ64
https://www.youtube.com/watch?v=FvNRlE4E9QQ

Where are proof assistants used? ?/11

Education

To teach programming language theory (Benjamin Pierce, UPenn)
To teach math (Kevin Buzzard, Imperial College)

To teach logic

To teach the theory of computing (here!)

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

https://softwarefoundations.cis.upenn.edu/
https://www.youtube.com/watch?v=Dp-mQ3HxgDE

What is next in Module 27 ?/11

e Formal languages
* Regular expressions
e Finite State Machines

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

Formal language

12/31

Formal language ?/11

Insight: If we restrict what program can do, then what guarantees can we obtain from the
restricted program?

e Goal: understanding the boundaries of computation
e Subject: decision procedures (a form of program)
e Method: introducing levels of restrictions in what programs can do

Decision procedures

* Ayes/no question: that takes a string as input
e A program: that implements said question

CS420 D Formallanguages) Lecture8) Tiago Cogumbreiro

Formal language examples ?/11

Using the mathematical notation, we simply use the set-builder notation to represent
formal languages. Set-membership is acceptance: x € L reads as L accepts z.

e L, = {w | w starts with string 01}
o Examples:01 € L; 0101 € L; foo ¢ L,

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

Formal language examples ?/11

Using the mathematical notation, we simply use the set-builder notation to represent
formal languages. Set-membership is acceptance: x € L reads as L accepts z.

e L, = {w | w starts with string 01}
o Examples:01 € L; 0101 € L; foo ¢ L,
e Ly = {w | w contains character a}

o Examples:000 € Ly aaaaa € Lo

CS420 D Formallanguages) Lecture8) Tiago Cogumbreiro

Formal language examples ?/11

Using the mathematical notation, we simply use the set-builder notation to represent
formal languages. Set-membership is acceptance: x € L reads as L accepts z.

e L, = {w | w starts with string 01}

o Examples:01 € L; 0101 € L; foo ¢ L,
e Ly = {w | w contains character a}

o Examples:000 € Ly aaaaa € Lo
e Ly = {w | w has 3 characters}

o Examples:000 € Ly aa ¢ L3

CS420 D Formallanguages) Lecture8) Tiago Cogumbreiro

Formal language examples ?/11

Using the mathematical notation, we simply use the set-builder notation to represent
formal languages. Set-membership is acceptance: x € L reads as L accepts z.

e L, = {w | w starts with string 01}
o Examples:01 € L; 0101 € L; foo ¢ L,
e Ly = {w | w contains character a}
o Examples:000 € Ly aaaaa € Lo
e Ly = {w | w has 3 characters}
o Examples:000 € Ly aa ¢ L3
e Ly = {w | wis the textual representation of a prime number }

o Examples:aa ¢ Ly 3 € Ly

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

Formal language examples ?/11

Using the mathematical notation, we simply use the set-builder notation to represent
formal languages. Set-membership is acceptance: x € L reads as L accepts z.

e L, = {w | w starts with string 01}
o Examples:01 € L; 0101 € L; foo ¢ L,
Ly, = {w | w contains character a}
o Examples:000 € Ly aaaaa € Lo
L3 = {w | w has 3 characters}
o Examples:000 € Ly aa ¢ L3
Ls = {w | w is the textual representation of a prime number }
o Examples:aa ¢ Ly 3 € Ly

L; = {w | wis avalid C program}

o Examples:void main(){return 0;} € L aa ¢ Ls

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

Formal language examples ?/11

Using the mathematical notation, we simply use the set-builder notation to represent
formal languages. Set-membership is acceptance: x € L reads as L accepts z.

e L, = {w | w starts with string 01}
o Examples:01 € L; 0101 € L; foo ¢ L,
Ly, = {w | w contains character a}
o Examples:000 € Ly aaaaa € Lo
L3 = {w | w has 3 characters}
o Examples:000 € Ly aa ¢ L3
Ls = {w | w is the textual representation of a prime number }
o Examples:aa ¢ Ly 3 € Ly

L; = {w | wis avalid C program}

o Examples:void main(){return0;} € Lj aa ¢ L;

L¢ = {w | w a valid C program and when run returns code 0}

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

Looking ahead: formal languages ?/11

 Formal languages can be grouped and ordered

 Smaller languages represent simpler decision problems

e Insight 1: we can develop a restricted set of constructs to write all programs in a group
e Insight 2: We can know more about simpler languages

Regular C Context-Free C Decidable C Turing Complete

Regular Decidable

e Ly = {w | w starts with string 01} e L, = {w | wis a prime number }

e Ly = {w | w contains character a}

Undecidable
e Ly = {w | whas 3 characters}
e Ls = {w | wa C program and returns code 0}

Context-free

e Ly = {w | wisavalid C program}

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

Formal languages in Coq

How do represent a formal language in Coq?

Formal language ?/11

A formal language is a predicate, of type (list ascii) — Prop:
o Takes a string (1ist ascii) and returns a proof object (an evidence),
o Acceptance: We say that the word is accepted by language L if, and only if L w.

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

Formal language ?/11

A formal language is a predicate, of type (list ascii) — Prop:
o Takes a string (1ist ascii) and returns a proof object (an evidence),
o Acceptance: We say that the word is accepted by language L if, and only if L w.

Implementation

Require Import Coq.Strings.Ascii.
Require Import Cog.Lists.List.
Open Scope char_scope.

Import ListNotations.

Definition word := list ascii.
Definition language := word — Prop.
Definition In w L = L w.

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

.

Strings and thelir operations dhsss
A string is a finite sequence of characters. € and [] represent an empty string.
Operators

e Length: The length of a string, written |w
contains.
e Substring: String z is a substring of w if z appears consecutively within w.

, IS the number of characters that the string

o Concatenation: We write x - y for the string concatenation

e Power: The power operator ™ where z is a string and n is natural number, defined as x
being concatenated n times (yields the empty string whenn = 0)

3

car — carcarcar
carO — €
carl = car

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

Strings in Coq

Require Import Coq.Strings.Ascii.
Require Import Coq.Lists.List.
Open Scope char_scope.

Import ListNotations.

Require Import Turing.Util.

Goal length ["c"; "a"; "r"] = 3. Proof.

Goal [u u] ++ [u u 1 u] [u u

Goal pOW [u u 1 u,] u] 3 [u n u u
Proof. reflex1v1ty Qed.

Goal pOW [u n, 1 u’] u] 1 [u n] u’

Goal pow [”c”, "a"; "r"] 0 = []. Proof

1" u’ 1 u] Proof

A,

UMASS
BOSTON

reflexivity. Qed.

reflexivity. Qed.

r'; "c¢"; "a"; "r"; "c"; "a"; "r"].

"r"]. Proof. reflexivity. Qed.
reflexivity. Qed.

| Coq has its own string data type, but we are not using that in this course.

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

Example 1 ?/11

| Recall that language := word = Prop

1. Define a language L1 that only accepts word ["c"; "a"; "r"]

2.Show that L1 accepts["c"; "a"; "r"]

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

Example 1 ?/11

| Recall that language := word = Prop

1. Define a language L1 that only accepts word ["¢"; "a"; "r"]
2.Show that L1 accepts["c"; "a"; "r"]

Definition L1 w :=w = ["c"; "a"; "r"].

Lemma car_in_11: In ["c¢"; "a"; "r"] L1.
Proof.

unfold L1.

reflexivity.
Qed.

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

Example 1 (continueq) ?/11

3.Show that L1 rejects ["f"; "o"; "o"]

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

Example 1 (continueq) ?/11

3.Show that L1 rejects ["f"; "o"; "o"]

Lemma foo_not_in_11: ~ In ["f"; "o"; "o"] L1.
Proof.

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

Example 1 (continueq) ?/11

3.Show that L1 rejects ["f"; "o"; "o"]

Lemma foo_not_in_11: ~ In ["f"; "o"; "o"] L1.
Proof.

unfold not, In.

intros N.

unfold L1 in N.

inversion N.
Qed.

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

Example 2: Vowel ?/11

1. Language L2 accepts strings that consist of a single vowel

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

.

Example 2: Vowel omass
1. Language L2 accepts strings that consist of a single vowel
Definition Vowel w := w = ["a"]

\/ w="["e"]

\/ =[]

\/ w=["0"]

\/ w=T["u"].

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

Fxample 2 (continued) ?/11

2. Show that Vowel accepts ["a"]

Lemma a_in_vowel: In ["a"] Vowel.
unfold Vowel.
Print or.

apply or_introl.
reflexivity.
Qed.

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

Fxample 2 (continuation) ?/11

3. Show that Vowel rejects ["a"; "a"]

Lemma aa_not_in_vowel: ~ In ["a"; "a"] Vowel.

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

FExample 2 (continuation) ?/11

3. Show that Vowel rejects ["a"; "a"]

Lemma aa_not_in_vowel: ~ In ["a"; "a"] Vowel.

unfold Vowel.

intros N.

destruct N as [N|[N|[N|[N|N]]]]; inversion N.
Qed.

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

A library of language operators

A library of language operators ?/11

o Recall that our objective is to group languages

 We want to have a compositional reasoning about languages

» ldea: Define an algebra of languages and study how properties behave under this
algebra

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

L anguage operators %

1.Nil
2.Char

3. Union
4. App

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

UMASS
BOSTON

Nil 7

I A language that only accepts the empty word.

Set-builder notation: {w | w =[]} or {w | w = €}

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro 28/31

UMASS
BOSTON

N1l

| A language that only accepts the empty word.
Set-builder notation: {w | w =[]} or {w | w = €}
Definition Nil w := w = [].

Correction properties

1. Show that Nil []
2. Show that if a word is accepted by Nil, then that word must be []

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

Char A

BOSTON

| A language that accepts a single character (given as parameter).

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

Char A

BOSTON

| A language that accepts a single character (given as parameter).

Definition Char ¢ (w:word) := w = [c].

Coercion Char: ascii > language.

Correction properties

1. Show that the word [c] is accepted by Char c:Char ¢ [c]
2. Show that any word w accepted by Char ¢ must be equal to [c]

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

Char A

BOSTON

| A language that accepts a single character (given as parameter).

Definition Char ¢ (w:word) := w = [c].

Coercion Char: ascii > language.

Correction properties

1. Show that the word [c] is accepted by Char c:Char ¢ [c]

2. Show that any word w accepted by Char ¢ must be equal to [c] Show that any word [c]
is in Char c:

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

Union g%

| A language that accepts all words of both languages.

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

Union g%

| A language that accepts all words of both languages.

Definition Union (L1 L2:language) w :=
InwlLl\/ Inw L2.

Infix "U" := Union.

Correction properties

1. If the word is accepted by either L1 or L2, then is accepted by L1 U L2
2.1f the word is accepted by L1 U L2, then is accepted by either L1 or L2.

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

App 4

I Language L1 > L2 accepts a word from L1 concatenated with a word from L2

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

App 4

I Language L1 > L2 accepts a word from L1 concatenated with a word from L2

Definition App (L1 L2:language) w :=
exists wl w2, w = wl ++ w2 /\ L1 w1 /\ L2 w2.

Correction properties

1.IfwlinLTand w2 in L2, thenwl ++ w2inL1 > L2.
2.1fwinL1 >» L2, thenthereexistswlinL1and w2 inlL2suchw = wl + w2.

CS420) Formallanguages) Lecture8) Tiago Cogumbreiro

