CS420
Logical Foundations of Computer Science
Lecture 7: Formal languages
Tiago Cogumbreiro
Today we will learn...

- Existential operator
- Mock Mini-Test 1
- Formal language
- Language operators
- Language equivalence
Existential quantification

\(\exists x. P \)
Existential quantification

```
Inductive ex (A : Type) (P : A → Prop) : Prop :=
| ex_intro : forall (x : A) (_ : P x), ex P.
```

Notation:

```
exists x:A, P x
```

- To conclude a goal \(\text{exists } x:A, \ P \ x \) we can use tactics \text{exist } x. which yields \(P \ x \).
 Alternatively, we can use apply \text{ex_intro}.

```
forall n, exists z, z + n = n
```

- To use a hypothesis of type \(H: \exists x:A, \ P \ x \), you can use destruct \(H \) as (x,H), or inversion \(H \)

```
forall n, (exists m, m < n) → n <> 0.
```
Q1.1

Is there any type such that any two values of that type are distinct?

exists \(X: \text{Type} \), \(\forall x, y: X, x \neq y \)
Q1.1

Is there any type such that any two values of that type are distinct?

Solution: Yes

Goal

\[\text{exists } X: \text{Type}, \forall x y: X, x \neq y. \]

Proof.

\[\text{exists False.} \]
\[\text{intros.} \]
\[\text{unfold not.} \]
\[\text{destruct } x. \]

Qed.
Q1.2

Is the following statement is provable in Coq?

true = false
Q1.2

Is the following statement is provable in Coq?

true = false

Solution: No

Goal

true = false → False.

Proof.

intros.

inversion H.

Qed.
Q1.3

All functions defined in Coq via Fixpoint must terminate on all inputs.
Q1.3

All functions defined in Coq via Fixpoint must terminate on all inputs.

Solution: Yes!
Q1.4

Is the type foo infinite?

```
Inductive foo : Type :=
  | mk_foo: foo → foo.
```
Q1.4

Is the type foo infinite?

Inductive foo : Type :=
 | mk_foo : foo → foo.

Solution: No!

Type foo is **empty**, as can be proved below.

Goal
 forall (f:foo), False.

Proof.
 intros.
 induction f.
 assumption.
Qed.
Q2.1

What is the type of the following expression?

\[\forall (X : \text{Type}), \forall (Y : \text{Type}), \forall (x : X), x = x \]
Q2.1

What is the type of the following expression?

\[
\forall (X : \text{Type}), \forall (Y : \text{Type}), \forall (x : X), x = x
\]

Answer: Prop
Q2.2

What is the type of the following expression?

```
fun (x:nat) ⇒ match [56;24] with [] ⇒ 32 | x::l ⇒ x+1 end
```
Q2.2

What is the type of the following expression?

```ocaml
fun (x:nat) ⇒ match [56;24] with [] ⇒ 32 | x::l ⇒ x+1 end
```

Answer: nat → nat
What is the type of the following expression?

Nat.eqb 56

Implementation of Nat.eqb:

Fixpoint eqb n m : bool :=
 match n, m with
 | 0, 0 ⇒ true
 | 0, S _ ⇒ false
 | S _, 0 ⇒ false
 | S n', S m' ⇒ eqb n' m'
end.
Q2.3

What is the type of the following expression?

Nat.eqb 56

Answer: nat -> bool

Implementation of Nat.eqb:

Fixpoint eqb n m : bool :=
 match n, m with
 | 0, 0 => true
 | 0, S _ => false
 | S _, 0 => false
 | S n', S m' => eqb n' m'
end.
forall (X : Type) (x y : X), x * y = 32

Fixpoint mul n m :=
 match n with
 | 0 ⇒ 0
 | S p ⇒ m + p * m
 end

where "n * m" := (mul n m) : nat_scope.
forall (X : Type) (x y : X), x * y = 32

Fixpoint mul n m :=
 match n with
 | 0 => 0
 | S p => m + p * m
 end

where "n * m" := (mul n m) : nat_scope.

Answer: ill formed, because X cannot be any type. Only works with nat.
Q3.1

The proof of this goal is: EASY / BY INDUCTION / NOT PROVABLE

forall n, n = S n
Q3.1

The proof of this goal is: EASY / BY INDUCTION / NOT PROVABLE

\[\forall n, n = S n \]

Answer: NOT PROVABLE
The proof of this goal is: EASY / BY INDUCTION / NOT PROVABLE

\[\forall x, y, x \cdot y = y \cdot x \]

```ocaml
Fixpoint mul n m :=
  match n with
  | 0 => 0
  | S p => m + p \cdot m
end

where "n \cdot m" := (mul n m) : nat_scope.
```
Q3.2

The proof of this goal is: EASY / BY INDUCTION / NOT PROVABLE

\[\forall x, y, \ x * y = y * x \]

Answer: BY INDUCTION

```ocaml
Fixpoint mul n m :=
  match n with
  | 0 => 0
  | S p => m + p * m
  end
where "n * m" := (mul n m) : nat_scope.
```
Q3.3

The proof of this goal is: EASY / BY INDUCTION / NOT PROVABLE

\[\forall n, n \not= S n \]
Q3.3

The proof of this goal is: EASY / BY INDUCTION / NOT PROVABLE

\[\forall n, n \neq S n \]

Answer: BY INDUCTION
Q4.1

Prove this goal:

\[H : P \rightarrow Q \]
\[H0 : P \lor \sim P \]

\[\sim P \lor Q \]

\[\sim P \lor Q \]
Q4.2

Prove this goal:

P : Prop
H0 : P

______________________________________(1/1)

~ ~ P