CS420

Logical Foundations of Computer Science

Lecture 6: Logical connectives

Tiago Cogumbreiro

Today we will learn...

- What are proofs?
- Logical connectives
- Inductive propositions

What are proofs?

• nat is a type

- nat is a type
- 5 is a value of type nat

- nat is a type
- 5 is a value of type nat
- Notations 5 : nat means 5 has type nat

UMASS

- nat is a type
- 5 is a value of type nat
- Notations 5 : nat means 5 has type nat
- Types can be thought of as sets
 - 5 : nat a programming notation $5 \in \mathcal{N}$

Consider the following Coq excerpt:

Definition x := 10.

• What is x?

Consider the following Coq excerpt:

- What is x? A variable.
- What is the value of x?

Consider the following Coq excerpt:

- What is x? A variable.
- What is the value of x? 5
- What is the type of x?

Consider the following Coq excerpt:

- What is x? A variable.
- What is the value of x? 5
- What is the type of x? nat
- How do I query the type of x in Coq?

UMASS

Exercise

Consider the following Coq excerpt:

- What is x? A variable.
- What is the value of x? 5
- What is the type of x? nat
- How do I query the type of x in Coq? Using Check.
- How do I query the value of x in Coq?

UMASS

Exercise

Consider the following Coq excerpt:

- What is x? A variable.
- What is the value of x? 5
- What is the type of x? nat
- How do I query the type of x in Coq? Using Check.
- How do I query the value of x in Coq? Using Print.

- A proof (or a proof object): a *completed* proof of some goal
 - usually written using tactics
 - $\circ~$ a proof object is a **value** of a proposition

- A proof (or a proof object): a completed proof of some goal
 - usually written using tactics
 - $\circ~$ a proof object is a value of a proposition
- A proposition: is a formula written in some logic
 - Propositions are of type Prop
 - You can confirm that something is a proposition using Check

- A proof (or a proof object): a completed proof of some goal
 - usually written using tactics
 - $\circ~$ a proof object is a value of a proposition
- A proposition: is a formula written in some logic
 - Propositions are of type Prop
 - $\circ~$ You can confirm that something is a proposition using Check
- A truthful proposition: a proposition that contains a proof
 - Proof : Proposition
 - We also say that the proposition **holds** (if there is some proof of it)

- A proof (or a proof object): a completed proof of some goal
 - usually written using tactics
 - $\circ~$ a proof object is a value of a proposition
- A proposition: is a formula written in some logic
 - Propositions are of type Prop
 - $\circ~$ You can confirm that something is a proposition using Check
- A truthful proposition: a proposition that contains a proof
 - Proof : Proposition
 - We also say that the proposition **holds** (if there is some proof of it)
- Assumption: a synonym of a proof

- A proof (or a proof object): a completed proof of some goal
 - $\circ~$ usually written using tactics
 - $\circ~$ a proof object is a value of a proposition
- A proposition: is a formula written in some logic
 - Propositions are of type Prop
 - $\circ~$ You can confirm that something is a proposition using Check
- A truthful proposition: a proposition that contains a proof
 - Proof : Proposition
 - We also say that the proposition **holds** (if there is some proof of it)
- Assumption: a synonym of a proof
- **Proof state:** zero or more assumptions and 1 or more goals we need to prove
 - Each assumption is an implication to the current goal
 - Each sub-goal is a conjunctions

UMASS

• Is 10 a proposition?

- Is 10 a proposition? No. 10 is a natural number.
- Is 2 = 2 a proposition?

- Is 10 a proposition? No. 10 is a natural number.
- Is 2 = 2 a proposition? Yes.
- Is beq_nat 2 2 a proposition?

- Is 10 a proposition? No. 10 is a natural number.
- Is 2 = 2 a proposition? Yes.
- Is beq_nat 2 2 a proposition? No, beq_nat 2 2 is an expression of type bool.
- Is the code below a proposition?

```
Lemma example: 2 = 2.
Proof.
   reflexivity.
Qed.
```

No, the code above is a **proof** of formula 2 = 2.

• What is example?

- Is 10 a proposition? No. 10 is a natural number.
- Is 2 = 2 a proposition? Yes.
- Is beq_nat 2 2 a proposition? No, beq_nat 2 2 is an expression of type bool.
- Is the code below a proposition?

```
Lemma example: 2 = 2.
Proof.
   reflexivity.
Qed.
```

- What is example? A proof of 2 = 2.
- What is the value of example?

- Is 10 a proposition? No. 10 is a natural number.
- Is 2 = 2 a proposition? Yes.
- Is beq_nat 2 2 a proposition? No, beq_nat 2 2 is an expression of type bool.
- Is the code below a proposition?

```
Lemma example: 2 = 2.
Proof.
   reflexivity.
Qed.
```

- What is example? A proof of 2 = 2.
- What is the value of example? reflexivity. (actually eq_refl)
- What is the type of example?

- Is 10 a proposition? No. 10 is a natural number.
- Is 2 = 2 a proposition? Yes.
- Is beq_nat 2 2 a proposition? No, beq_nat 2 2 is an expression of type bool.
- Is the code below a proposition?

```
Lemma example: 2 = 2.
Proof.
   reflexivity.
Qed.
```

- What is example? A proof of 2 = 2.
- What is the value of example? reflexivity. (actually eq_refl)
- What is the type of example? 2 = 2.
- What is the type of 2 = 2?

- Is 10 a proposition? No. 10 is a natural number.
- Is 2 = 2 a proposition? Yes.
- Is beq_nat 2 2 a proposition? No, beq_nat 2 2 is an expression of type bool.
- Is the code below a proposition?

```
Lemma example: 2 = 2.
Proof.
   reflexivity.
Qed.
```

- What is example? A proof of 2 = 2.
- What is the value of example? reflexivity. (actually eq_refl)
- What is the type of example? 2 = 2.
- What is the type of 2 = 2? Prop.

- Is 10 a proposition? No. 10 is a natural number.
- Is 2 = 2 a proposition? Yes.
- Is beq_nat 2 2 a proposition? No, beq_nat 2 2 is an expression of type bool.
- Is the code below a proposition?

```
Lemma example: 2 = 2.
Proof.
   reflexivity.
Qed.
```

- What is example? A proof of 2 = 2.
- What is the value of example? reflexivity. (actually eq_refl)
- What is the type of example? 2 = 2.
- What is the type of 2 = 2? Prop.

Inductive propositions

We have seen how to define types inductively; propositions can also be defined inductively.

- instead of Type we use Prop
- the parameters are not just values, but propositions
- the idea is to build your logical argument as structured data

We will now encode various logical connectives using inductive definitions.

Conjunction

 $P \wedge Q$

1. What is the type of P?

- 1. What is the type of P? Prop
- 2. What is the type of Q?

- 1. What is the type of P? Prop
- 2. What is the type of $Q ? \operatorname{\mathsf{Prop}}$
- 3. What is the type of \land ?

- 1. What is the type of P? Prop
- 2. What is the type of Q? Prop
- 3. What is the type of \land ? Prop \rightarrow Prop \rightarrow Prop

Let and represent \land :

and: $Prop \rightarrow Prop \rightarrow Prop$

Recall how we defined a pair:

Inductive pair (X:Type) (Y:Type) : Type := ...

How would we define and?

Conjunction

Inductive and (P Q : **Prop**) : **Prop** := $| \text{ conj } : P \rightarrow Q \rightarrow \text{ and } P Q.$

- apply conj to solve a goal, inversion in a hypothesis
- The /\ operator represents a logical conjunction (usually typeset with \land)
- The split tactics is used to prove a goal of type ?X /\ ?Y, where ?X and ?Y are propositions

Notice that P /\ Q is a type (a proposition) and that conj is the only constructor of that type.

Conjunction example

Example and_example : 3 + 4 = 7 / 2 * 2 = 4. **Proof**.

apply conj.

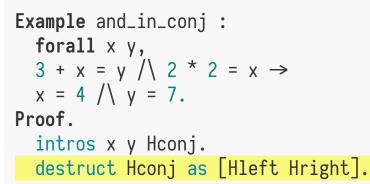
(Done in class.)

Conjunction example 1

More generally, we can show that if we have propositions A and B, we can conclude that we have $A \wedge B$.

```
Goal forall A B : Prop, A \rightarrow B \rightarrow A /\ B.
```

Conjunction in the hypothesis



Conjunction example 2


```
Lemma correct_2 : forall A B : Prop, A /\setminus B \rightarrow A. Proof.
```

```
Lemma correct_3 : forall A B : Prop, A /\ B \rightarrow B.
Proof.
```

Disjunction

 $P \lor Q$

1. What is the type of P?

What is $P \lor Q$?

- 1. What is the type of P? Prop
- 2. What is the type of Q?

What is $P \lor Q$?

- 1. What is the type of P? Prop
- 2. What is the type of $Q ? \operatorname{\mathsf{Prop}}$
- 3. What is the type of \lor ?

What is $P \lor Q$?

- 1. What is the type of P? Prop
- 2. What is the type of Q? Prop
- 3. What is the type of \lor ? Prop \rightarrow Prop \rightarrow Prop

How can we define an disjunction using an inductive proposition?

Disjunction


```
Inductive or (A B : Prop) : Prop :=
    | or_introl : A → or A B
    | or_intror : B → or A B
```

- apply or_introl or apply or_intror to goal; inversion to hypothesis
- The \backslash operator represents a logical disjunction (usually typeset with \lor)
- The left (right) tactics are used to prove a goal of type ?X \/ ?Y, replacing it with a new goal ?X (?Y respectively)

Disjunction example


```
Theorem or_1: forall A B : Prop, A \rightarrow A \/ B.
```

```
Theorem or_2: forall A B : Prop,
B \rightarrow A \/ B.
```

Disjunction in the hypothesis

Tactics **destruct** can break a disjunction into its two cases. Tactics **inversion** also breaks a disjunction, but leaves the original hypothesis in place.

```
Lemma or_example :

forall n m : nat, n = 0 \setminus m = 0 \rightarrow n^* m = 0.

Proof.

intros n m Hor.

destruct Hor as [Heq | Heq].
```

CS420: Lecture 6 🐃 Tiago Cogumbreiro

Recall a proof state

1 subgoal T : Type x : T P : Prop H1 : 1 = x H2 : P ______(1/1) 1 = 2 /\ P

- All hypothesis are **variables** of a specific type, Type, or proposition
- Goals are (usually) propositions
- Propositions (instances of Prop) can mention values

Can a proposition mention pair, the constructor of prod? Can a proposition mention conj, the constructor of and?

CS420: Lecture 6 🐃 Tiago Cogumbreiro

Recall a proof state

- All hypothesis are variables of a specific type, Type, or proposition
- Goals are (usually) propositions
- Propositions (instances of Prop) can mention values

Can a proposition mention pair, the constructor of prod? Can a proposition mention conj, the constructor of and? Yes and no, respectively.

Where do constructors of propositions appear?

Theorems are expressions too


```
Theorem and_conj: forall P Q:Prop,

P \rightarrow Q \rightarrow P / \setminus Q.

Proof.

intros P Q H1 H2.

apply (conj H1 H2).

Qed.
```

Proposition-constructors and theorems are **functions** whose parameters are **evidences**.

Truth

Τ

Truth

Truth can be encoded in Coq as a proposition that always holds, which can be described as a proposition type with a single constructor with 0-arity.

```
Inductive True : Prop := I : True.
```

You will note that proposition **True** is not a very useful one.

Truth example

Goal True.

Falsehood

So far we only seen results that are provable (eg, plus is commutative, equals is transitive)

How to encode falsehood in Coq?

Falsehood

Falsehood in Coq is represented by an **empty** type.

Inductive False : Prop :=.

- The only way to reach it is by using the exploding principle
- No constructors available. Thus, no way to build an inhabitant of False.

Example:

Goal 1 = 2 \rightarrow False.

Goal False \rightarrow 1 = 2.

Goal False.

Negation

 $\neg P$

Negation

The negation of a proposition eg P is defined as

```
(* As defined in Coq's stdlib *)
Definition not (H:Prop) := H → False.
Goal not (1 = 2).
Outputs:
1 subgoal
.....(1/1)
1 <> 2
(Done in class.)
```

Negation-related notations

- not P is the same as ~ P, typeset as $\neg P$
- not (x = y) is the same as x <> y, typeset as x
 eq y

Can we rewrite **not** with an inductive proposition?

