CS420

Introduction to the Theory of Computation
Lecture 5: Polymorphism:; constructor injectivity, explosion principle

Tiago Cogumbreiro

CS420) Polymorphism; constructor injectivity, explosion principle) Lecture5) Tiago Cogumbreiro

HW1 so far... 7

18 students have not submitted their homework (~40%)
>70% with at least 50 points (C)

>40% have at least 80 points (B)

6 submissions are failing (<50 points)

CS420) Polymorphism; constructor injectivity, explosion principle) Lecture5) Tiago Cogumbreiro

Today we will learn about... 7

BOSTON

Type polymorphism (types in parameters)
Applying (using) theorems

Rewriting rules with pre-conditions
Applying theorems with pre-conditions
Disjoint constructors

Principle of explosion

CS420 D Polymorphism; constructor injectivity, explosion principle) Lecture5) Tiago Cogumbreiro

Polymorphism

Recall natlist ?/11

Inductive natlist : Type :=
| nil : natlist
| cons : nat = natlist — natlist.

| How do we write a list of bools?

CS420 D Polymorphism; constructor injectivity, explosion principle) Lecture5) Tiago Cogumbreiro

Recall natlist ?/11

Inductive natlist : Type :=
| nil : natlist
| cons : nat = natlist — natlist.

| How do we write a list of bools?

Inductive boollist : Type :=
| bool_nil : boollist
| bool_cons : nat — boollist — boollist.

I How to migrate the code that targeted natlist to boollist? What is missing?

CS420 D Polymorphism; constructor injectivity, explosion principle) Lecture5) Tiago Cogumbreiro

Polymorphism ?/11

Inductive types can accept (type) parameters (akin to Java/C# generics, and type variables
in C++ templates).

Inductive list (X:Type) : Type :=
| nil : list X
| cons : X = list X = list X.

I What is the type of 1ist? How do we print 1ist?

CS420) Polymorphism; constructor injectivity, explosion principle) Lecture5) Tiago Cogumbreiro

Constructors of a polymorphic list ?/11

Check list.
yields
list
: Type = Type

| What does Type — Type mean? What about the following?

Search list.
Check list.
Check nil nat.
Check nil 1.

CS420 D Polymorphism; constructor injectivity, explosion principle) Lecture5) Tiago Cogumbreiro

How do we encode the list [1: 2]? m

BOSTON

CS420 D Polymorphism; constructor injectivity, explosion principle) Lecture5) Tiago Cogumbreiro

How do we encode the list [1: 2]? m

BOSTON

cons nat 1 (cons nat 2 (nil nat))

CS420) Polymorphism; constructor injectivity, explosion principle) Lecture5) Tiago Cogumbreiro

Implement concatenation ?/11

Fixpoint app (11 12 : natlist) : natlist :=
match 11 with

| nil = 12
| h :: t =h :: (app t 12)
end.

I How do we make app polymorphic?

CS420 D Polymorphism; constructor injectivity, explosion principle) Lecture5) Tiago Cogumbreiro

Implement concatenation ?/11

Fixpoint app (11 12 : natlist) : natlist :=
match 11 with

| nil = 12
| h :: t = h :: (app t 12)
end.

I How do we make app polymorphic?

Fixpoint app (X:Type) (11 12 : list X) : list X :=
match 11 with

| nil _ = 12

| cons _h t = cons X h (app X t 12)

end.

| What is the type of app?

CS420) Polymorphism; constructor injectivity, explosion principle) Lecture5) Tiago Cogumbreiro

Implement concatenation ?/11

Fixpoint app (11 12 : natlist) : natlist :=
match 11 with

| nil = 12
| h :: t = h :: (app t 12)
end.

I How do we make app polymorphic?

Fixpoint app (X:Type) (11 12 : list X) : list X :=
match 11 with

| nil _ = 12

| cons _h t = cons X h (app X t 12)

end.

I What is the type of app? forall X : Type, list X = list X — list X

CS420) Polymorphism; constructor injectivity, explosion principle) Lecture5) Tiago Cogumbreiro

Type inference (1/2) 7

Coq infer type information:

Fixpoint app X 11 12 :=

match 11 with

| nil _ = 12

| cons _h t = cons X h (app X t 12)
end.

Check app.

outputs

app
: forall X : Type, list X = list X = list X

CS420) Polymorphism; constructor injectivity, explosion principle) Lecture5) Tiago Cogumbreiro

Type inference (2/2) 7

Fixpoint app X (11 12:1list X) :=

match 11 with

| nil _ = 12

| cons —h t = cons - h (app - t 12)
end.

Check app.

app
: forall X : Type, list X = list X = list X

Let us look at the output of

Compute cons nat 1 (cons nat 2 (nil nat)).
Compute cons _ 1 (cons - 2 (nil _)).

CS420 D Polymorphism; constructor injectivity, explosion principle) Lecture5) Tiago Cogumbreiro

Type information redundancy %

| If Coq can infer the type, can we automate inference of type parameters?

CS420) Polymorphism; constructor injectivity, explosion principle) Lecture5) Tiago Cogumbreiro

Type information redundancy %

| If Coq can infer the type, can we automate inference of type parameters?

Fixpoint app {X:Type} (11 12:1ist X) : list X :=
match 11 with

| nil = 12

| cons h t = cons h (app t 12)

end.

Alternatively, use Arguments after a definition:

Arguments nil {X}.
Arguments cons {_} _ _.
Arguments app {X} 11 12.

CS420 D Polymorphism; constructor injectivity, explosion principle) Lecture5) Tiago Cogumbreiro

Try the following .

BOSTON

Inductive list (X:Type) : Type :=
| nil : list X
| cons : X = list X = list X.

Arguments nil {_}.
Arguments cons {X} x y.

Search 1list.
Check list.
Check nil nat.
Compute nil nat.

| What went wrong?

CS420 D Polymorphism; constructor injectivity, explosion principle) Lecture5) Tiago Cogumbreiro

Try the following m

BOSTON

Inductive list (X:Type) : Type :=
| nil : list X
| cons : X = list X — list X.

Arguments nil {_}.
Arguments cons {X} x y.

Search 1list.
Check list.
Check nil nat.
Compute nil nat.

What went wrong? How do we supply type parameters when they are being
automatically inferred?

CS420) Polymorphism; constructor injectivity, explosion principle) Lecture5) Tiago Cogumbreiro

Try the following m

BOSTON

Inductive list (X:Type) : Type :=
| nil : list X
| cons : X = list X — list X.

Arguments nil {_}.
Arguments cons {X} x y.

Search 1list.
Check list.
Check nil nat.
Compute nil nat.

What went wrong? How do we supply type parameters when they are being
automatically inferred?

Prefix a definition with @. Example: @nil nat.

CS420) Polymorphism; constructor injectivity, explosion principle) Lecture5) Tiago Cogumbreiro

Tacticsy

14/29

Exercise 1: transitivity over equals A

UMASS
BOSTON

Theorem eq_trans : forall (T:Type) (x y z : T),
X =y —>y=2z—>Xx-=2Z.

Proof.
intros T x y z eql eq2.
rewrite = eql.

yields

1 subgoal
T : Type
X, y, z : T
eql : X
eqe : vy

i1
N <

| How do we conclude this proof?

CS420) Polymorphism; constructor injectivity, explosion principle) Lecture5) Tiago Cogumbreiro

Exercise 1: transitivity over equals A

UMASS
BOSTON

Theorem eq_trans : forall (T:Type) (x y z : T),
X =y —>y=2z—>Xx-=2Z.

Proof.
intros T x y z eql eq2.
rewrite = eql.

yields

1 subgoal
T : Type
X, y, z : T
eql : X
eqe : vy

i1
N <

| How do we conclude this proof? Yes, rewrite = eq2. reflexivity. works.

CS420) Polymorphism; constructor injectivity, explosion principle) Lecture5) Tiago Cogumbreiro

Exercise 1. introducing apply m

BOSTON

Apply takes an hypothesis/lemma to conclude the goal.

apply eq2.
Qed.
apply takes 7X to conclude a goal 7X (resolves foralls in the hypothesis).
1 subgoal
T : Type
X, ¥, z : T
eql : x =y
eq2 : y = z
______________________________________ (1/1)
y =z

CS420) Polymorphism; constructor injectivity, explosion principle) Lecture5) Tiago Cogumbreiro

Applying conditional hypothesis ?/11

apply uses an hypothesis/theorem of formatH1 — ... = Hn = G, then solves goal G, and
produces new goals H1, ..., Hn.

Theorem eq_trans_2 : forall (T:Type) (x y z: T),
(x=y—>y=z->x=2) >
X =y —>
y =z =
X = Z.

Proof.
intros T x y z eql eq2 eq3.
apply eql.

(Doneinclass.)

CS420) Polymorphism; constructor injectivity, explosion principle) Lecture5) Tiago Cogumbreiro

Rewriting conditional hypothesis ?/11

apply uses an hypothesis/theorem of formatH1 — ... = Hn = G, then solves goal G, and
produces new goals H1, ..., Hn.

Theorem eq_trans_3 : forall (T:Type) (x y z: T),
(x=y—>y=z->x=2) >
X

:ye
y =z —>
X = z.
Proof.

intros T x y z eql eq2 eq3.
rewrite = eql.

(Doneinclass.)

| Notice that there are 2 conditions in eql, so we get 3 goals to solve.

CS420 D Polymorphism; constructor injectivity, explosion principle) Lecture5) Tiago Cogumbreiro

Recap ?/11

What's the difference between reflexivity, rewrite, and apply?

1. reflexivity solves goals that can be simplified as an equality like 7X = ?X

2.rewrite — Htakes an hypothesis Hof typeHl — ... = Hn = ?X = ?Y, finds any sub-
term of the goal that matches 7X and replaces it by ?Y; it also produces goals H1,..., Hn.
rewrite does not care about what your goal is, just that the goal must contain a pattern ?

X.
3.apply Htakes an hypothesisHof typeHl = ... = Hn = G and solves goal G; it creates
goals H1, ..., Hn.

CS420) Polymorphism; constructor injectivity, explosion principle) Lecture5) Tiago Cogumbreiro

Apply with/Rewrite with 7

Theorem eq_trans_nat : forall (x y z: nat),

x =1 -
X =y =
y =z —>
z = 1.
Proof.

intros x y z eql eqg2 eq3.
assert (eq4: x = z). {
apply eg-trans.
outputs

Unable to find an instance for the variable y.
We can supply the missing arguments using the keyword with: apply eq-trans with

(y:=y).

| Can we solve the same theorem but use reurite instead?

CS420 D Polymorphism; constructor injectivity, explosion principle) Lecture5) Tiago Cogumbreiro

Symmetry ?/11

What about this exercise?

Theorem eq_trans_nat : forall (x y z: nat),

x =1 -
X =y =
y =z —
1=12z.
Proof.

intros x y z eql eq2 eq3.
assert (eq4: x = z). {

CS420 D Polymorphism; constructor injectivity, explosion principle) Lecture5) Tiago Cogumbreiro

Symmetry ?/11

What about this exercise?

Theorem eq_trans_nat : forall (x y z: nat),

x =1 —>
X =y =
y =z —
1=12z.
Proof.

intros x y z eql eq2 eq3.
assert (eq4: x = z). {

We canrewrite agoal 72X = ?Yinto ?Y = 7X with symmetry.

CS420) Polymorphism; constructor injectivity, explosion principle) Lecture5) Tiago Cogumbreiro

Apply In example ?/11

Theorem silly3' : forall (n : nat),
(beg_nat n 5 = true = beg_nat (S (S n)) 7 = true) -
true = beq_nat n 5 —
true = beg_nat (S (S n)) 7.
Proof.
intros n eq H.
symmetry in H.
apply eq in H.

(Doneinclass.)

CS420) Polymorphism; constructor injectivity, explosion principle) Lecture5) Tiago Cogumbreiro

Targetting hypothesis ?/11

e rewrite = H1 in H2
e symmetry in H
e apply H1 in H2

CS420) Polymorphism; constructor injectivity, explosion principle) Lecture5) Tiago Cogumbreiro

Forward vs backward reasoning ?/11

If we have atheorem L: C1 = C2 = G:
e Goal takes last: apply to goal of type G and replaces G by C1 and C2

o Assumption takes first: apply to hypothesis L to an hypothesisH: C1 and rewrites H:C?2
—> 0

Proof styles:

» Forward reasoning: (apply in hypothesis) manipulate the hypothesis until we reach a
goal.
Standard in math textbooks.

 Backward reasoning: (apply to goal) manipulate the goal until you reach a state where

you can apply the hypothesis.
Idiomaticin Coq.

CS420 D Polymorphism; constructor injectivity, explosion principle) Lecture5) Tiago Cogumbreiro

Recall our encoding of natural numbers m

BOSTON

Inductive nat : Type :=
| 0 : nat
| S : nat = nat.

1. Does the equation S n = 8 hold? Why?

CS420 D Polymorphism; constructor injectivity, explosion principle) Lecture5) Tiago Cogumbreiro

Recall our encoding of natural numbers m

BOSTON

Inductive nat : Type :=
| 0 : nat
| S : nat = nat.

1. Does the equation S n = 8 hold? Why?
No the constructors are implicitly disjoint.

2.1fS n = S m, can we conclude something about the relation between n and m?

CS420 D Polymorphism; constructor injectivity, explosion principle) Lecture5) Tiago Cogumbreiro

Recall our encoding of natural numbers m

BOSTON

Inductive nat : Type :=
| 0 : nat
| S : nat = nat.

1. Does the equation S n = 8 hold? Why?
No the constructors are implicitly disjoint.

2.1fS n =S m, can we conclude something about the relation between n and m?
Yes, constructor S is injective. Thatis, ifS n = S m,thenn = mholds.

These two principles are available to all inductive definitions! How do we use these two
properties in a proof?

CS420 D Polymorphism; constructor injectivity, explosion principle) Lecture5) Tiago Cogumbreiro

Proving that S is injective (1/2) m

BOSTON

Theorem S_injective : forall (n m : nat),
Sn=Snm->
n =m.
Proof.
intros n m eql.
inversion eql.

If we run inversion, we get:

1 subgoal

n, m : nat

eql : Sn=Sm
HO : n=m

CS420) Polymorphism; constructor injectivity, explosion principle) Lecture5) Tiago Cogumbreiro

Injectivity in constructors ?/11

Theorem S_injective : forall (n m : nat),
Sn=Snmn->
n=m.
Proof.
intros n m eql.
inversion eql as [eq2].

If you want to name the generated hypothesis you must figure out the destruction pattern
anduseas [...]. Forinstance, if we run inversion eql as [eq2], we get:

1 subgoal
n, m : nat
eql : Sn
eq2 : n =

CS420) Polymorphism; constructor injectivity, explosion principle) Lecture5) Tiago Cogumbreiro

Disjoint constructors ?/11

Theorem beg_nat_0_1 : forall n,
beg_nat @ n = true = n = 0.
Proof.
intros n eql.
destruct n.

(Todoinclass.)

CS420) Polymorphism; constructor injectivity, explosion principle) Lecture5) Tiago Cogumbreiro

Principle of explosion ?/11

Ex falso (sequitur) quodlibet

inversion concludes absurd hypothesis, where there is an equality between different
constructors. Use inversion eql to conclude the proof below.

1 subgoal
n : nat
eql : false = true

CS420 D Polymorphism; constructor injectivity, explosion principle) Lecture5) Tiago Cogumbreiro

