Today we will learn...

1. More on the assert tactic
2. Defining data-structures in Coq
More on assert
Exercise 1

Lemma zero_in_middle:
 \(\forall n \, m, \, n + 0 + m = n + m \).
Proof.
 intros.
Exercise 1

Lemma zero_in_middle:
\[
\forall n \ m, n + 0 + m = n + m.
\]

Proof.

1. Using intermediate results: **plus_n_0**
2. Passing parameters to theorems: **add_assoc**
Exercise 1: Solution 1

1. Using intermediate results: \texttt{plus}_.\texttt{n}_.0
Exercise 1: Solution 1

1. Using intermediate results: \texttt{plus_n_0}

Lemma zero_in_middle:
\[
\forall n \ m, \ n + 0 + m = n + m.
\]

Proof.
\begin{verbatim}
intros.
assert (n + 0 = n). {
 rewrite plus_n_0.
 reflexivity.
}
rewrite H.
reflexivity.
Qed.
\end{verbatim}
Exercise 2: add is associative

Lemma add_assoc:

\[\text{forall } n \ m \ o, \]
\[(n + m) + o = n + (m + o). \]
Exercise 2: add is associative

Lemma add_assoc:
 forall n m o,
 (n + m) + o = n + (m + o).

Proof.
 intros.
 induction n. {
 simpl.
 reflexivity.
 }
 simpl.
 rewrite IHn.
 reflexivity.
Qed.
2. Passing parameters to theorems: add_assoc

Lemma zero_in_middle:
 forall n m, n + 0 + m = n + m.
Proof.
Exercise 1: Solution 2

2. Passing parameters to theorems: add_assoc

Lemma zero_in_middle:
forall n m, n + 0 + m = n + m.
Proof.

intros.
assert (Hx := add_assoc n 0 m).
rewrite Hx.
simpl.
reflexivity.
Qed.
Lemma zero_in_middle_2:
 \forall n \ m, \ n + (0 + m) = n + m.

Proof.
Exercise 1: Solution 2

Lemma zero_in_middle_2:

forall n m, n + (0 + m) = n + m.

Proof.

You are now ready to conclude HW1
How do we define a data structure that holds two nats?
A pair of nats

Inductive natprod : Type :=
| pair : nat → nat → natprod.

Notation "(x , y)" := (pair x y).

Explicit vs implicit: be cautious when declaring notations, they make your code harder to understand.
How do we read the contents of a pair?
Accessors of a pair
Accessors of a pair

Definition \(\text{fst} (p : \text{natprod}) : \text{nat} := \)
Accessors of a pair

Definition \(\text{fst} (p : \text{natprod}) : \text{nat} := \)**
\[
\begin{align*}
\text{match } p \text{ with} \\
| \text{pair } x \ y & \Rightarrow x \\
\text{end.}
\end{align*}
\]

Definition \(\text{snd} (p : \text{natprod}) : \text{nat} := \)**
\[
\begin{align*}
\text{match } p \text{ with} \\
| (x, y) & \Rightarrow y (* \text{using notations in a pattern to be matched} *) \\
\text{end.}
\end{align*}
\]
How do we prove the correctness of our accessors?

(What do we expect fst/snd to do?)
Proving the correctness of our accessors:

\[\text{Theorem} \ \text{surjective_pairing} : \ \forall (p : \text{natprod}), \ p = (\text{fst} \ p, \text{snd} \ p). \]

\[\text{Proof.} \]
\[\text{intros} \ p. \]

1 subgoal
p : \text{natprod}
---------------------------(1/1)
p = (\text{fst} \ p, \text{snd} \ p)

- Does simpl work? Does reflexivity work? Does destruct work? What about induction?
How do we define a list of nats?
A list of nats

Inductive natlist : Type :=
| nil : natlist
| cons : nat -> natlist -> natlist.

(* You don't need to learn notations, just be aware of its existence:*)

Notation "x :: l" := (cons x l) (at level 60, right associativity).
Notation "[]" := nil.
Notation "[x ; .. ; y]" := (cons x .. (cons y nil) ..).

Compute cons 1 (cons 2 (cons 3 nil)).

Outputs:
= [1; 2; 3]
: list nat
How do we concatenate two lists?
Concatenating two lists

Fixpoint app (l1 l2 : natlist) : natlist :=
 match l1 with
 | nil => l2
 | h :: t => h :: (app t l2)
end.

Notation "x ++ y" := (app x y) (right associativity, at level 60).
Proving results on list concatenation

Theorem nil_app_l : forall l:natlist,
 [] ++ l = l.

Proof.
 intros l.

Can we prove this with reflexivity? Why?
Proving results on list concatenation

Theorem nil_app_l : \forall l : natlist,
\[
[] ++ l = l.
\]

Proof.

intros l.

Can we prove this with reflexivity? Why?

reflexivity.
Qed.
Nil is a neutral element wrt app

Theorem nil_app_l : forall l:natlist, l ++ [] = l.
Proof.
intros l.

Can we prove this with reflexivity? Why?
Nil is a neutral element wrt app

Theorem nil_app_l : \forall l: natlist, \\
\text{\textbf{Proof.}} \\
\text{intros 1.}

Can we prove this with reflexivity? Why?

In environment \\
l : natlist \\
Unable to unify "l" with "l ++ []".

How can we prove this result?
We need an induction principle of `natlist`.

For some property P we want to prove:

- Show that $P([\,])$ holds.
- Given the induction hypothesis $P(l)$ and some number n, show that $P(n :: l)$ holds.

Conclude that $P(l)$ holds for all l.

How do we know this principle? Hint: compare `natlist` with `nat`.
How do we know the induction principle?

Use search

Search natlist.

which outputs

\[
\text{nil: natlist} \\
\text{cons: nat} \to \text{natlist} \to \text{natlist}
\]

(* trimmed output *)

natlist_ind:

\[
\text{forall } P : \text{natlist} \to \text{Prop}, \\
P [] \to \\
(\text{forall } (n : \text{nat}) (l : \text{natlist}), P \ l \to P (n::l)) \to \text{forall } n : \text{natlist}, P \ n
\]
Nil is neutral on the right (1/2)

Theorem nil_app_r : forall l:natlist,
 l ++ [] = l.
Proof.
 intros l.
 induction l.
 - reflexivity.
 -

yields

1 subgoal
n : nat
l : natlist
IHl : l ++ [] = l

(1/1)
(n :: l) ++ [] = n :: l
Nil is neutral on the right (2/2)

1 subgoal
n : nat
l : natlist
IHl : l ++ [] = l

_______________________________(1/1)
(n :: l) ++ [] = n :: l
Nil is neutral on the right (2/2)

1 subgoal
n : nat
l : natlist
IHl : l ++ [] = l

______________________________________(1/1)
(n :: l) ++ [] = n :: l

simpl. (* app (n::l) [] = n :: (app l []) *)
rewrite → IHl. (* n :: (app l []) = n :: l *)
reflexivity. (* conclude *)

Can we apply rewrite directly without simplifying?
Hint: before and after stepping through a tactic show/hide notations.
How do we state a theorem that leads to the same proof state (without Ltac)?