Today we will learn...

- Rewriting tactics
- Case analysis tactics
- Induction tactics
- Induction principle
Rewriting terms
Multiple pre-conditions in a lemma

Theorem plus_id_example :
forall n m:nat,
 n = m →
 n + n = m + m.

Proof.
 intros n.
 intros m.
Theorem plus_id_example : forall n m:nat,
 n = m ->
 n + n = m + m.
Proof.
 intros n.
 intros m.

yields

1 subgoal
n, m : nat
--(1/1)
n = m -> n + n = m + m
Multiple pre-conditions in a lemma

applying intros H yields

1 subgoal

n, m : nat
H : n = m

______________________________________(1/1)

n + n = m + m

How do we use H? **New tactic: use rewrite → H (lhs becomes rhs)**

1 subgoal

n, m : nat
H : n = m

______________________________________(1/1)

m + m = m + m

How do we conclude? Can you write a Theorem that replicates the proof-state above?
Let us prove this example

Theorem plus_id_exercise : forall n m o : nat,
 n = m -> m = o -> n + m = m + o.
Proof.

(Done in class...)
Comparing naturals

Consider this recursive function that tests if two naturals are equal.

```ocaml
Fixpoint beq_nat (n m : nat) : bool :=
  match n with
  | O => match m with
    | O => true
    | S m' => false
  end
  | S n' => match m with
    | O => false
    | S m' => beq_nat n' m'
  end
end.
```
How do we prove this example?

Theorem plus_1_neq_0_firsttry : forall n : nat,
beq_nat (plus n 1) 0 = false.

Proof.

```lean
intros n.
```

yields

```
1 subgoal
n : nat
_______________________________(1/1)
beq_nat (plus n 1) 0 = false
```
How do we prove this example?

Theorem plus_1_neq_0_firsttry : forall n : nat, beq_nat (plus n 1) 0 = false.

Proof.

`intros n.`

yields

```
1 subgoal
n : nat

-----------------------------------------------(1/1)
beq_nat (plus n 1) 0 = false
```

Apply simpl and it does nothing. Apply reflexivity:

In environment

```
n : nat
```

Unable to unify "false" with "beq_nat (plus n 1) 0".
Why does simpl fail?

Q: Why can't beq_nat (n + 1) be simplified? (Hint: inspect its definition.)
Why does simp fail?

Q: Why can't beq_nat (n + 1) be simplified? (Hint: inspect its definition.)

A: beq_nat expects the first parameter to be either 0 or S ?n, but we have an expression n + 1 (or plus n 1).
Why does simpl fail?

Q: Why can't beq_nat (n + 1) be simplified? (Hint: inspect its definition.)
A: beq_nat expects the first parameter to be either 0 or S ?n, but we have an expression n + 1 (or plus n 1).

Q: Can we simplify plus n 1?
Why does simpl fail?

Q: Why can't beq_nat (n + 1) be simplified? (Hint: inspect its definition.)

A: beq_nat expects the first parameter to be either 0 or S ?n, but we have an expression n + 1 (or plus n 1).

Q: Can we simplify plus n 1?

A: No because plus decreases on the first parameter, not on the second!
Case analysis
Case analysis (1/3)

Let us try to inspect value \(n \). Use: `destruct n as [_ n']`.

2 subgoals

\[\text{beq_nat (0 + 1) 0 = false} \] \[
\text{beq_nat (S n' + 1) 0 = false} \]

Now we have two goals to prove!

1 subgoal

\[\text{beq_nat (0 + 1) 0 = false} \]

How do we prove this?
Case analysis (2/3)

After we conclude the first goal we get:
This subproof is complete, but there are some unfocused goals:

______________________________________(1/1)
\(\text{beq_nat (} S \ n' + 1 \text{)} \ 0 = \text{false} \)

Use another bullet (-).

1 subgoal

\(n' : \text{nat} \)

______________________________________(1/1)
\(\text{beq_nat (} S \ n' + 1 \text{)} \ 0 = \text{false} \)

And prove the goal above as well.

Why can the latter be simplified?
Case analysis (3/3)

- Use: `destruct n as [| n']` when you want to explicitly name the variables being introduced.
- Otherwise, use: `destruct n` and let Coq automatically name the variables.

Using automatically generated variable names makes the proofs more brittle to change.
Example: prove this lemma (1/4)

Theorem `plus_n_0 : forall n:nat, n = n + 0.

Proof.
Example: prove this lemma (1/4)

Theorem plus_n_0 : forall n:nat,
 n = n + 0.
Proof.
Tactic simpl does nothing.
Theorem plus_n_0 : forall n:nat,
 n = n + 0.
Proof.

Tactic simpl does nothing. Tactic reflexivity fails.
Example: prove this lemma (1/4)

Theorem `plus_n_0` : `forall` `n:nat`,
\[n = n + 0. \]

Proof.

Tactic `simpl` does nothing. Tactic `refl` xivity fails. Apply `destruct n`.

2 subgoals

\[0 = 0 + 0 \]

\[S n = S n + 0 \]
Example: prove this lemma (2/4)

After proving the first, we get

1 subgoal
n : nat
______________________________________(1/1)
S n = S n + 0

Applying `simpl` yields:

1 subgoal
n : nat
______________________________________(1/1)
S n = S (n + 0)
Example: prove this lemma (2/4)

After proving the first, we get

```
1 subgoal
n : nat
----------------------------------------(1/1)
S n = S n + 0
```

Applying `simpl` yields:

```
1 subgoal
n : nat
----------------------------------------(1/1)
S n = S (n + 0)
```

Tactic `reflexivity` fails and there is nothing to rewrite.
We need an induction principle of nat

For some property P we want to prove.

- Show that $P(0)$ holds.
- Given the induction hypothesis $P(n)$, show that $P(n + 1)$ holds.

Conclude that $P(n)$ holds for all n.
Example: prove this lemma (3/4)

Apply induction n.

<table>
<thead>
<tr>
<th>2 subgoals</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 = 0 + 0</td>
</tr>
<tr>
<td>$S\ n = S\ n + 0$</td>
</tr>
</tbody>
</table>

How do we prove the first goal?
Compare induction n with destruct n.
Example: prove this lemma (4/4)

After proving the first goal we get

1 subgoal
n : nat
IHn : n = n + 0

S n = S n + 0

applying simpl yields

1 subgoal
n : nat
IHn : n = n + 0

S n = S (n + 0)

How do we conclude this proof?
Intermediary results

Theorem mult_0_plus' : forall n m : nat,
(0 + n) * m = n * m.
Proof.
intros n m.
assert (H: 0 + n = n). { reflexivity. }
rewrite -> H.
reflexivity. Qed.

- H is a variable name, you can pick whichever you like.
- Your intermediary result will capture all of the existing hypothesis.
- It may include forall.
- We use braces { and } to prove a sub-goal.