

Introduction to the Theory of Computation

Lecture 24: Undecidable problems

Tiago Cogumbreiro

Today we learn

- Decidability results
- Halting problem
- Emptiness for TM is undecidable

Section 4.2, 5.1

Decidability and Recognizability

Understanding the limits of decision problems

Implementation: algorithm that answers a decision problem, that is algorithm says YES whenever decision problem says YES.

Concept	Intuition	Example
Recognizable	Can we implement the problem?	A_{TM}
Decidable	Can we implement the problem and prove it terminates?	A_{REX}
Undecidable	Impossible to say NO without looping	A_{TM}
Unrecognizable	Impossible to say YES and NO without looping	???

Why is A_{TM} recognizable?

UMass Boston

Decidability and Recognizability

Understanding the limits of decision problems

Concept	YES without looping	NO without looping
Recognizable	Possible	Maybe
Decidable	Possible	Possible
Undecidable	Maybe	Impossible
Unrecognizable	Impossible	Impossible

- Possible: we known an implementation (\exists)
- Impossible: no implementation is possible (\forall)

Warmup

```
Require Import Turing. Turing.
```

```
Lemma decidable_to_recognizable:
    forall L,
    Decidable L ->
    Recognizable L.
Proof.
Admitted.
```

```
Lemma unrecognizable_to_undecidable:
    forall L,
        ~ Recognizable L ->
        ~ Decidable L.
Proof.
Admitted.
```


Corollary 4.23

\overline{A}_{TM} is unrecognizable

Corollary 4.23: \overline{A}_{TM} is unrecognizable

Lemma co_a_tm_not_recognizable: ~ Recognizable (compl A_tm).

Done in class...

Corollary 4.18

Some languages are unrecognizable

Corollary 4.18 Some languages are unrecognizable

Proof.

Corollary 4.18 Some languages are unrecognizable

Proof. An example of an unrecognizable language is: \overline{A}_{TM}

If L is decidable,

then \overline{L} is decidable

On pen-and-paper proofs

4.22

THEOREM

A language is decidable iff it is Turing-recognizable and co-Turing-recognizable.

In other words, a language is decidable exactly when both it and its complement are Turing-recognizable.

PROOF We have two directions to prove. First, if A is decidable, we can easily see that both A and its complement \overline{A} are Turing-recognizable. Any decidable language is Turing-recognizable, and the complement of a decidable language also is decidable.

Proof of Theorem 4.22 Taken from the book.

First, if A is decidable, we can easily see that both A and its complement A are Turingrecognizable.

- A is decidable, then A is recognizable by definition.
- A is decidable, then \overline{A} is recognizable? Why?

Any decidable language is Turing-recognizable,

• Yes, by definition.

and the complement of a decidable language also is decidable.

• Why?

If L is decidable, then \overline{L} is decidable

1. Let M decide L.

2. Create a Turing machine that negates the result of M.

```
Definition inv M w :=
   mlet b <- Call m w in Ret (negb b).</pre>
```

- 3. Show that inv M recognizes $Inv(L) = \{w \mid M \text{ rejects } w\}$
- 4. Show that the result of inv M for any word w is the negation of running M with m, where negation of accept is reject, reject is accept, and loop is loop.
- 5. The goal is to show that $\underline{inv} M$ recognizes \overline{L} and is decidable.

What about loops? If M loops on some word w, then inv M would also loop. How is does inv M recognize \overline{L} ?

If L is decidable, then \overline{L} is decidable

1. Let M decide L.

2. Create a Turing machine that negates the result of M.

```
Definition inv M w :=
  mlet b <- Call m w in Ret (negb b).</pre>
```

- 3. Show that inv M recognizes $Inv(L) = \{w \mid M \text{ rejects } w\}$
- 4. Show that the result of inv M for any word w is the negation of running M with m, where negation of accept is reject, reject is accept, and loop is loop.
- 5. The goal is to show that $\underline{inv} M$ recognizes \overline{L} and is decidable.

What about loops? If M loops on some word w, then inv M would also loop. How is does inv M recognize \overline{L} ?

Recall that L is decidable, so M will never loop.

If L is decidable, then \overline{L} is decidable

Continuation...

Part 1. Show that inv M recognizes \overline{L}

We must show that: If M decides L and inv M recognizes Inv(L), then inv M is decidable. It is enough to show that if M decides L, then $Inv(L) = \overline{L}$. Show proof inv_compl_equiv .

Part 2. Show that inv M is a decider

Show proof decides_to_compl.

Chapter 5: Undecidability

HALT_{TM}: Termination of TM Will this TM halt given this input?

(The Halting problem)

$HALT_{\mathsf{TM}}$ is undecidable

Theorem 5.1: HALT_TM loops for some input

Set-based encoding

Function-based encoding

 $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$ def HALT_TM(M,w): return M halts on w

Proof

Proof idea: Given Turing machine acc, show that acc decides A_{TM} .

```
def acc(M, w):
    if HALT_TM(M,w):
        return M(w)
    else:
        return False
```


$HALT_{\mathsf{TM}}$ is undecidable

Theorem 5.1: Proof overview

Definition acc (solve_HALT:input->prog) p :=
 let (M, w) := decode_mach_input p in
 mlet b <- solve_HALT p in (* HALT(M, w)*)
 if b then Call M w else Ret false.</pre>

Apply Thm 4.11 to (H) "acc decides A_{TM} " and reach a contradiction. To prove H:

1. Show that acc recognizes A_{TM}

2. Show that acc is decidable

*E*_{TM}: Emptiness of TM (Is the language of this TM empty?)

Set-based

```
E_{\mathsf{TM}} = \{ \langle M \rangle \mid M 	ext{ is a TM and } L(M) = \emptyset \}
```

```
Function-based
```

```
def E_TM(M):
    return L(M) == {}
```

Proof overview: show that acc decides A_{TM}

```
def build_M1(M,w):
    def M1(x):
        if x == w:
            return M accepts w
        else:
            return False
        return M1
```

```
def acc(M, w):
    b = E_TM(build_M1(M, w))
    return not b
```

• $w \in L(t M1) \iff \langle t M1
angle
otin E_{TM}$ ullet $w\in L(t M1)$ \iff $w\in L(M)$ **UMass** Bosto

Proof follows by contradiction.

Proof follows by contradiction.

1. Show that E_{TM} decidable implies A_{TM} decidable.

Proof follows by contradiction.

- 1. Show that E_{TM} decidable implies A_{TM} decidable.
- 2. Reach contradiction by applying Thm 4.11 to (1)

Proof follows by contradiction.

1. Show that E_{TM} decidable implies A_{TM} decidable.

2. Reach contradiction by applying Thm 4.11 to (1)

Goal: E_{TM} decidable implies A_{TM} decidable

Proof follows by contradiction.

1. Show that E_{TM} decidable implies A_{TM} decidable.

2. Reach contradiction by applying Thm 4.11 to (1)

Goal: E_{TM} decidable implies A_{TM} decidable Let D decide E_{TM} .

1. Show that acc recognizes A_{TM}

Proof follows by contradiction.

1. Show that E_{TM} decidable implies A_{TM} decidable.

2. Reach contradiction by applying Thm 4.11 to (1)

Goal: E_{TM} decidable implies A_{TM} decidable

Let D decide E_{TM} .

- 1. Show that acc recognizes A_{TM}
 - 1. Show that $A_{\mathsf{TM}} = \operatorname{Acc}_D$ where $\operatorname{Acc}_D = \{\langle M, w \rangle \mid L(\mathtt{M1}_{M,w}) \neq \emptyset\}$ (e_tm_a_tm_spec)

Proof follows by contradiction.

1. Show that E_{TM} decidable implies A_{TM} decidable.

2. Reach contradiction by applying Thm 4.11 to (1)

Goal: $E_{\rm TM}$ decidable implies $A_{\rm TM}$ decidable

Let D decide E_{TM} .

- 1. Show that acc recognizes A_{TM}
 - 1. Show that $A_{\mathsf{TM}} = \operatorname{Acc}_D$ where $\operatorname{Acc}_D = \{ \langle M, w \rangle \mid L(\mathtt{M1}_{M,w}) \neq \emptyset \}$ (e_tm_a_tm_spec)
 - 2. Show that acc recognizes Acc_D (E_tm_A_tm_recognizes)

Proof follows by contradiction.

1. Show that E_{TM} decidable implies A_{TM} decidable.

2. Reach contradiction by applying Thm 4.11 to (1)

Goal: $E_{\rm TM}$ decidable implies $A_{\rm TM}$ decidable

Let D decide E_{TM} .

- 1. Show that acc recognizes A_{TM}
 - 1. Show that $A_{\mathsf{TM}} = \operatorname{Acc}_D$ where $\operatorname{Acc}_D = \{\langle M, w \rangle \mid L(\mathtt{M1}_{M,w}) \neq \emptyset\}$ (e_tm_a_tm_spec)
 - 2. Show that acc recognizes Acc_D (E_tm_A_tm_recognizes)
- 2. Show that acc is a decider (decider_E_tm_A_tm)

Part 1.1: Show that $A_{\mathsf{TM}} = \operatorname{Acc}_D$ where $\operatorname{Acc}_D = \{ \langle M, w \rangle \mid L(\mathtt{M1}_{M,w})
eq \emptyset \}$

Theorem not_empty_to_accept

1. Show that: If $L(\mathtt{M1}_{M,w}) \neq \emptyset$, then M accepts w.

Part 1.1: Show that $A_{\mathsf{TM}} = \operatorname{Acc}_D$ where $\operatorname{Acc}_D = \{ \langle M, w
angle \mid L(\mathtt{M1}_{M,w})
eq \emptyset \}$

Theorem not_empty_to_accept

1. Show that: If $L(\mathtt{M1}_{M,w}) \neq \emptyset$, then M accepts w.

 $\circ\,$ Case analysis on running M with input w:

Part 1.1: Show that $A_{\mathsf{TM}} = \operatorname{Acc}_D$ where $\operatorname{Acc}_D = \{ \langle M, w \rangle \mid L(\mathtt{M1}_{M,w})
eq \emptyset \}$

Theorem not_empty_to_accept

- 1. Show that: If $L(\mathtt{M1}_{M,w}) \neq \emptyset$, then M accepts w.
 - $\circ\,$ Case analysis on running M with input w:
 - Case (a) M accepts w: use assumption to conclude

Part 1.1: Show that $A_{\mathsf{TM}} = \operatorname{Acc}_D$ where $\operatorname{Acc}_D = \{ \langle M, w \rangle \mid L(\mathtt{M1}_{M,w})
eq \emptyset \}$

Theorem not_empty_to_accept

- 1. Show that: If $L(\mathtt{M1}_{M,w}) \neq \emptyset$, then M accepts w.
 - $\circ\,$ Case analysis on running M with input w:
 - Case (a) M accepts w: use assumption to conclude
 - Case (b) M rejects w: we can conclude that $L(\mathtt{M1}_{M,w}) = \emptyset$ from (b)

Part 1.1: Show that $A_{\mathsf{TM}} = \operatorname{Acc}_D$ where $\operatorname{Acc}_D = \{ \langle M, w
angle \mid L(\mathtt{M1}_{M,w})
eq \emptyset \}$

Theorem not_empty_to_accept

1. Show that: If $L(\mathtt{M1}_{M,w}) \neq \emptyset$, then M accepts w.

- $\,\circ\,$ Case analysis on running M with input w:
 - Case (a) M accepts w: use assumption to conclude
 - Case (b) M rejects w: we can conclude that $L(\mathtt{M1}_{M,w}) = \emptyset$ from (b)
 - Case (c) M loops with w: same as above

Part 1.1: Show that $A_{\mathsf{TM}} = \operatorname{Acc}_D$ where $\operatorname{Acc}_D = \{ \langle M, w \rangle \mid L(\mathtt{M1}_{M,w})
eq \emptyset \}$

Theorem accept_to_not_empty

2. Show that: If M accepts w, then $L(\mathtt{M1}_{M,w}) \neq \emptyset$.

Part 1.1: Show that $A_{\mathsf{TM}} = \operatorname{Acc}_D$ where $\operatorname{Acc}_D = \{ \langle M, w
angle \mid L(\mathtt{M1}_{M,w})
eq \emptyset \}$

Theorem accept_to_not_empty

2. Show that: If M accepts w, then $L(\mathtt{M1}_{M,w}) \neq \emptyset$.

1. Proof follows by contradiction: assume $L(M1_{M,w}) = \emptyset$.

Part 1.1: Show that $A_{\mathsf{TM}} = \operatorname{Acc}_D$ where $\operatorname{Acc}_D = \{ \langle M, w
angle \mid L(\mathtt{M1}_{M,w})
eq \emptyset \}$

Theorem accept_to_not_empty

2. Show that: If M accepts w, then $L(\mathtt{M1}_{M,w}) \neq \emptyset$.

1. Proof follows by contradiction: assume $L(M1_{M,w}) = \emptyset$.

2. We know that $\mathtt{M1}_{M,w}$ does not accept w from (2.1)

Part 1.1: Show that $A_{\mathsf{TM}} = \operatorname{Acc}_D$ where $\operatorname{Acc}_D = \{\langle M, w
angle \mid L(\mathtt{M1}_{M,w})
eq \emptyset\}$

Theorem accept_to_not_empty

2. Show that: If M accepts w, then $L(\mathtt{M1}_{M,w}) \neq \emptyset$.

- 1. Proof follows by contradiction: assume $L(M1_{M,w}) = \emptyset$.
- 2. We know that $\mathtt{M1}_{M,w}$ does not accept w from (2.1)
- 3. To contradict 2.2, we show that $\mathtt{M1}_{M,w}$ accepts w

Part 1.1: Show that $A_{\mathsf{TM}} = \operatorname{Acc}_D$ where $\operatorname{Acc}_D = \{ \langle M, w
angle \mid L(\mathtt{M1}_{M,w})
eq \emptyset \}$

Theorem accept_to_not_empty

2. Show that: If M accepts w, then $L(\mathtt{M1}_{M,w}) \neq \emptyset$.

- 1. Proof follows by contradiction: assume $L(M1_{M,w}) = \emptyset$.
- 2. We know that $\mathtt{M1}_{M,w}$ does not accept w from (2.1)
- 3. To contradict 2.2, we show that $\mathtt{M1}_{M,w}$ accepts w
 - 1. Since x = w and (2.1), then $\mathtt{M1}_{M,w}$ accepts w

