Today we will learn...

- Turing Machine theory in Coq
- Undecidability
- Unrecognizability

Section 4.2
Turing Machine theory in Coq
Turing Machine theory in Coq

- **What?** I am implementing the Sipser book in Coq.
- **Why?**
 - So that we can dive into any proof at any level of detail.
 - So that you can inspect any proof and step through it on your own.
 - So that you can ask why and immediately have the answer.

Do you want to help out?
Why is proving important to CS?

- **Generality is important.** Whenever we implement a program, we are implicitly proving some notion of correctness in our minds (the program is the proof).

- **Rigour is important.** The importance of having precise definitions. Fight ambiguity!

- **Assume nothing and question everything.** In formal proofs, we are pushed to ask why? And we have a framework to understand why.

- **Models are important.** The basis of formal work is abstraction (or models), e.g., Turing machines as models of computers; REGEX vs DFAs vs NFAs.

What follows is a description of our Coq implementation.
Unspecified input/machines

For the remainder of this module we leave the input (string) and a Turing Machine unspecified.

```coq
Variable input : Type.
Variable machine : Type.
```
Running a TM

We can run any Turing Machine given an input and know whether or not it accepts, rejects a given input. We leave running a Turing Machine unspecified.

Parameter \(\text{Exec}: \text{machine} \rightarrow \text{input} \rightarrow \text{bool} \rightarrow \text{Prop} \).

Parameter \(\text{exec_exists}: \forall m \ i, \left(\exists b, \text{Exec} \ m \ i \ b \right) \lor \left(\forall b, \neg \text{Exec} \ m \ i \ b \right) \).

Properties

- A machine may execute a return either true or false
- A machine may be unable to execute a given input (e.g., the machine loops forever)
What is a language?

A language is a predicate: a formula parameterized on the input.

Definition $\text{lang} := \text{input} \rightarrow \text{Prop}.$

Defining a set/language

Set builder notation

$$L = \{x \mid P(x)\}$$

Functional encoding

$$L(x) \overset{\text{def}}{=} P(x)$$

Defining membership

Set membership

$$x \in L$$

Functional encoding

$$L(x)$$
Example

Set builder example

\[L = \{ a^n b^n \mid n \geq 0 \} \]

Functional encoding

\[L(x) \overset{\text{def}}{=} \exists n, x = a^n b^n \]
The language of a TM

Set builder notation

The language of a TM can be defined as:

\[L(M) = \{ w \mid M \text{ accepts } w \} \]

Functional encoding

\[L_M(w) \overset{\text{def}}{=} M \text{ accepts } w \]

In Coq

```
Definition Lang (m:machine) : lang := fun i => Exec m i true.
```
prog

A DSL for composing Turing Machines
Specifying TMs with prog

- prog is a **domain-specific** language (DSL) that allow us to compose Turing machines
- prog gives an unique opportunity for CS420 students to study complex Theoretical Computer Science problems in a (hopefully) intuitive framework
- All theorems studied in this course are fully proved; students can see all details at their own time, interactively
- The proofs follow the structure of the book as close as possible

Did you know?

- gitlab.com/umb-svl/turing is a research project that stemmed from trying to teach CS420 in a more compelling way (project-based, + interactive, + student-autonomous)
- This semester we are pushing the state-of-the-art of teaching Theoretical Computer Science
- Your input matters!
Turing programs

Inductive prog :=
| Call : machine \rightarrow input \rightarrow Prog
| Ret : bool \rightarrow prog
| Seq : prog \rightarrow (bool \rightarrow prog) \rightarrow prog.

- Call runs a Turing machine on a given input (only needed for main results)
- Ret rejects/accepts (pick one) the given input
- Seq p q runs program p, if p terminates, then run q

Notation:

\[\text{mlet } x \leftarrow p1 \text{ in } p2 \equiv \text{Seq } p1 (\text{fun } x \Rightarrow p2) \]
Run (part 1)

1. Rule run_ret: the result of returning \texttt{b} (with Ret \texttt{b}) is \texttt{b}

\[
\text{Run (Ret b) b}
\]

2. The result of calling a TM \texttt{m} is given by calling run \texttt{m} \texttt{i}.

\[
\begin{align*}
\text{Exec } m \, i \, b \\
\Rightarrow \text{Run(Call } m \, i \,) \, b
\end{align*}
\]
3. If we run program p and get a result r_1 and p terminates with b and we run $(p ~ b)$ and get a result r_2, then sequencing p with q returns result r_2.

\[
\begin{align*}
\text{Run} ~ p ~ b_1 & \quad \text{Run} ~ (q ~ b_1) ~ b_2 \\
\text{Run} ~ (\text{Seq} ~ p ~ q) ~ b_2
\end{align*}
\]
Inductive Run: prog → bool → Prop :=

| run_call: (**) Run a turing machine m. *)
 | forall m i b,
 | Exec m i b →
 | Run (Call m i) b |

| run_ret: (**) We can directly return a result *)
 | forall b,
 | Run (Ret b) b |

| run_seq: (**) If p terminates and returns b, then we can proceed with the execution of q b. *)
 | forall p q b1 b2,
 | Run p b1 →
 | Run (q b1) b2 →
 | Run (Seq p q) b2. |
Goal \textit{exists} b, Run (Ret true) b. Proof. Admitted.

Goal \textit{exists} b, Run (Ret false) b. Proof. Admitted.

Goal \textit{forall} b, Run (Ret true) b \rightarrow b = true. Proof. Admitted.

Goal \textit{exists} b, Run (mlet x \leftarrow \text{Ret true} \text{ in } \text{Ret true}) b. Proof. Admitted.

Goal \textit{exists} b, Run (mlet x \leftarrow \text{Ret true} \text{ in } \text{Ret false}) b. Proof. Admitted.

Goal \textit{forall} p q b1, Run (mlet x \leftarrow p \text{ in } q) b1 \rightarrow \textit{exists} b2, Run (mlet x \leftarrow q \text{ in } p) b2. Proof. Admitted.
Inductive Loop: prog → Prop :=

| loop_tur:
| (** When the turing machine loops, calling it loops *)
| forall m i,
| (forall b, ~ Exec m i b) →
| Loop (Call m i)

| loop_seq_l:
| (** If p terminates and returns b, then we can proceed with the execution of q b. *)
| forall p q,
| Loop p →
| Loop (Seq p q)

| loop_seq_r:
| (** If p terminates and returns b, then we can proceed with the execution of q b. *)
| forall p q b,
| Run p b →
| Loop (q b) →
| Loop (Seq p q).
Inductive Halt : prog → Prop :=

| halt_ret: (** We can directly return a result *)
 | forall b,
 | Halt (Ret b)

| halt_call: (** Run a turing machine m. *)
 | forall m i b,
 | Exec m i b →
 | Halt (Call m i)

| halt_seq: (** If p terminates and returns b, then we can proceed with the execution of q b. *)
 | forall p q b,
 | Run p b →
 | Halt (q b) →
 | Halt (Seq p q).
Program p recognizes a language L if p accepts the same inputs as those in language L.

Definition Recognizes (p: input \rightarrow prog) (L:lang) \equiv
for all i, Run (p i) true \iff L i.

- Use `recognizes_def`, or `unfold` to build Recognizes p L.
Recognizable

Call a language (Turing-)recognizable if some prog recognizes it.

Definition Recognizable (L:lang) : Prop :=
exists p, Recognizes p L.
Decides

A program \(p \) decides a language \(L \) if:

1. \(p \) recognizes \(L \)
2. \(p \) is a decider

Definition Decides \(p, L \) := Recognizes \(p, L \) \(\land \) Decider \(p \).
Decider

A program that never loops for all possible inputs.

Definition Decider (p:input → prog) := forall i, Halt (p i).
Decidable

Definition Decidable $L := \exists p, \text{Decides } p L$.
Summary

<table>
<thead>
<tr>
<th>Term</th>
<th>Usage</th>
<th>Coq</th>
<th>Constructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run</td>
<td>Run a program p that outputs b</td>
<td>Run p b</td>
<td>Print Run.</td>
</tr>
<tr>
<td>Recognizes</td>
<td>a program recognizes a language</td>
<td>Recognizes p L</td>
<td>recognizes_def</td>
</tr>
<tr>
<td>Recognizable</td>
<td>a language is recognizable</td>
<td>Recognizable L</td>
<td>recognizable_def</td>
</tr>
<tr>
<td>Decides</td>
<td>a program decides a language</td>
<td>Decides p L</td>
<td>decides_def</td>
</tr>
<tr>
<td>Decider</td>
<td>a program is a decider</td>
<td>Decider p</td>
<td>decider_def</td>
</tr>
<tr>
<td>Decidable</td>
<td>a language is decidable</td>
<td>Decidable L</td>
<td>decidable_def</td>
</tr>
</tbody>
</table>
Recognizes

We give a formal definition of recognizing a language. We say that M recognizes L if, and only if, M accepts w whenever $w \in L$.

Definition Recognizes (m: machine) (L: lang) := forall w, run m w = Accept <-> L w.

Examples

- Saying M recognizes $L = \{a^n b^n \mid n \geq 0\}$ is showing that there exist a proof that shows that all inputs in language L are accepted by M and vice-versa.
- Trivially, M recognizes $L(M)$.
We will prove 4 theorems

- Theorem 4.11 A_{TM} is undecidable
- Theorem 4.22 L is decidable if, and only if, L is recognizable and co-recognizable
- Corollary 4.23 \overline{A}_{TM} is unrecognizable
- Corollary 4.18 Some languages are unrecognizable

Why?

- We will learn that we cannot write a program that decides if a TM accepts a string
- We can define decidability in terms of recognizability+complement
- There are languages that cannot be recognized by some program
Theorem 4.11

A_{TM} is undecidable
Proof idea

1. Assume solving A_{TM} is decidable and reach a contradiction.
2. Find a program for which it is impossible to decide

```python
def tricky(f):
    return not f(f)

print(tricky(lambda x: True))  # Output?
```
Proof idea

1. Assume solving A_{TM} is decidable and reach a contradiction.
2. Find a program for which it is impossible to decide

```python
def tricky(f):
    return not f(f)

print(tricky(lambda x: True))  # Output?
# False
try:
    print(tricky(tricky))  # Output?
except RecursionError:
    print("could not run: tricky(tricky)"")
Proof idea

1. Assume solving $A_{TM}$ is decidable and reach a contradiction.

2. Find a program for which it is impossible to decide

```python
def tricky(f):
 return not f(f)

print(tricky(lambda x: True)) # Output?

False
try:
 print(tricky(tricky)) # Output?
except RecursionError:
 print("could not run: tricky(tricky)")
```

Calling `tricky(tricky)` loops **forever**.
Let the solver of $A_{TM}$ be `returns_true` which takes a boolean function $f$, an argument $a$, and returns whether $f(a)$ would return true. Function `returns_true` **halts** for every input.

```python
def tricky_v2(f):
 return not returns_true(f, f)
```

1. What would the result of `tricky_v2(tricky_v2)` be?
Proof idea

Let the solver of $A_{TM}$ be `returns_true` which takes a boolean function $f$, an argument $a$, and returns whether $f(a)$ would return true. Function `returns_true` halts for every input.

```python
def tricky_v2(f):
 return not returns_true(f, f)
```

1. What would the result of `tricky_v2(tricky_v2)` be?
2. Assume that `tricky_v2(tricky_v2)` loops
Proof idea

Let the solver of $A_{TM}$ be `returns_true` which takes a boolean function $f$, an argument $a$, and returns whether $f(a)$ would return true. Function `returns_true` \textbf{halts} for every input.

def tricky_v2(f):
    return not returns_true(f, f)

1. What would the result of `tricky_v2(tricky_v2)` be?
2. Assume that `tricky_v2(tricky_v2)` \textbf{loops}
3. \textbf{not return_true(tricky_v2, tricky_v2)} \textbf{loops}
   (replace function call by definition)
Proof idea

Let the solver of $A_{TM}$ be `returns_true` which takes a boolean function $f$, an argument $a$, and returns whether $f(a)$ would return true. Function `returns_true` **halts** for every input.

```python
def tricky_v2(f):
 return not returns_true(f, f)
```

1. What would the result of `tricky_v2(tricky_v2)` be?

2. Assume that `tricky_v2(tricky_v2)` **loops**

3. `not return_true(tricky_v2, tricky_v2)` **loops**
   (replace function call by definition)

4. `not false` **loops**
   (return_true(tricky_v2, tricky_v2) = false from assumption 2)
Let the solver of $A_{TM}$ be `returns_true` which takes a boolean function $f$, an argument $a$, and returns whether $f(a)$ would return true. Function `returns_true` **halts** for every input.

```python
def tricky_v2(f):
 return not returns_true(f, f)
```

1. What would the result of `tricky_v2(tricky_v2)` be?
2. Assume that `tricky_v2(tricky_v2)` **loops**
3. `not return_true(tricky_v2, tricky_v2)` **loops**
   (replace function call by definition)
4. `not false` **loops**
   (return_true(tricky_v2, tricky_v2) = false from assumption 2)
5. **contradiction**
Proof idea

1. Assume \texttt{tricky\_v2(tricky\_v2) = true}
Proof idea

1. Assume `tricky_v2(tricky_v2) = true`
2. `not return_true(tricky_v2, tricky_v2) = true`
   (replace function call by function body)
Proof idea

1. Assume tricky_v2(tricky_v2) = true
2. not return_true(tricky_v2, tricky_v2) = true
   (replace function call by function body)
3. not true = true
   (since from assumption 2, return_true(tricky_v2, tricky_v2) = true)