CS420

Introduction to the Theory of Computation

Lecture 4: Manipulating theorems; data-structures

Tiago Cogumbreiro
Today we will learn...

1. More on the assert tactic
2. Defining data-structures in Coq
More on `assert`
Exercise 1

Lemma zero_in_middle:

```latex
\forall n \, m, \, n + 0 + m = n + m.
```

Proof.

`intros.`
Lemma zero_in_middle:
 \forall n \ m, n + 0 + m = n + m.

Proof.
 intros.

1. Using intermediate results: \texttt{plus_n_0}
2. Passing parameters to theorems: \texttt{add_assoc}
Exercise 1: Solution 1

1. Using intermediate results: plus_n_0
Exercise 1: Solution 1

1. Using intermediate results: `plus_n_0`

Lemma zero_in_middle:
\[\forall n \, m, \ n + 0 + m = n + m. \]

Proof.
\[
\begin{align*}
\text{intros.} \\
\text{assert} \ (n + 0 = n). \ \{ \\
\text{rewrite} \ \text{plus_n_0}. \\
\text{reflexivity.} \\
\} \\
\text{rewrite} \ H. \\
\text{reflexivity.} \\
\text{Qed.}
\end{align*}
\]
Exercise 2: add is associative

Lemma add_assoc:
\[
\text{forall } n \ m \ o, \\
(n + m) + o = n + (m + o).
\]
Exercise 2: add is associative

Lemma add_assoc:
\[
\text{forall } n \ m \ o, \\
(n + m) + o = n + (m + o).
\]

Proof.
\begin{verbatim}
intros.
induction n. {
simpl.
 reflexivity.
}
simpl.
rewrite IHn.
reflexivity.
Qed.
\end{verbatim}
Exercise 1: Solution 2

2. Passing parameters to theorems: add_assoc

Lemma zero_in_middle:

\[
\forall n \, m, \ n + 0 + m = n + m.
\]

Proof.
Exercise 1: Solution 2

2. Passing parameters to theorems: add_assoc

Lemma zero_in_middle:
 \(\forall n, m, n + 0 + m = n + m. \)
Proof.

intros.
assert (Hx := add_assoc n 0 m).
rewrite Hx.
simpl.
reflexivity.
Qed.
Lemma zero_in_middle_2:
 \[\forall n \ m, \ n + (0 + m) = n + m. \]

Proof.
Exercise 1: Solution 2

Lemma zero_in_middle_2:
 \(\forall n \ m, n + (0 + m) = n + m \).

Proof.

You are now ready to conclude HW1
How do we define a data structure that holds two nats?
A pair of nats

```coq
Inductive natprod : Type :=
| pair : nat → nat → natprod.

Notation "( x , y )" := (pair x y).
```

Explicit vs implicit: be cautious when declaring notations, they make your code harder to understand.
How do we read the contents of a pair?
Accessors of a pair
Accessors of a pair

Definition \(\text{fst} \ (p : \text{natprod}) : \text{nat} := \)
Accessors of a pair

Definition \(\text{fst} (p : \text{natprod}) : \text{nat} := \)**

\[
\begin{align*}
\text{match } p \text{ with} \\
| \text{pair } x \ y & \Rightarrow x \\
\text{end.}
\end{align*}
\]

Definition \(\text{snd} (p : \text{natprod}) : \text{nat} := \)**

\[
\begin{align*}
\text{match } p \text{ with} \\
| (x, y) & \Rightarrow y (* \text{using notations in a pattern to be matched *}) \\
\text{end.}
\end{align*}
\]
How do we prove the correctness of our accessors?

(What do we expect fst/snd to do?)
Proving the correctness of our accessors:

Theorem surjective_pairing : \(\forall (p : \text{natprod}), p = (\text{fst } p, \text{snd } p) \).

Proof.

\[
\text{intros } p.
\]

1 subgoal

\[
p : \text{natprod}
\]

\[\text{-----------------------------}(1/1)\]

\[
p = (\text{fst } p, \text{snd } p)
\]

Does simpl work? Does reflexivity work? Does destruct work? What about induction?
How do we define a list of nats?
A list of nats

```
Inductive natlist : Type :=
| nil : natlist |
| cons : nat -> natlist -> natlist.

(* You don't need to learn notations, just be aware of its existence:*)

Notation "x :: l" := (cons x l) (at level 60, right associativity).
Notation "[]" := nil.
Notation "[ x ; .. ; y ]" := (cons x .. (cons y nil) ..).

Compute cons 1 (cons 2 (cons 3 nil)).
```

outputs:
= [1; 2; 3]
: list nat
How do we concatenate two lists?
Concatenating two lists

Fixpoint app (l1 l2 : natlist) : natlist :=
 match l1 with
 | nil => l2
 | h :: t => h :: (app t l2)
 end.

Notation "x ++ y" := (app x y) (right associativity, at level 60).
Proving results on list concatenation

Theorem nil_app_l : \forall l: natlist, [] ++ l = l.

Proof.
intros l.

Can we prove this with reflexivity? Why?
Proving results on list concatenation

Theorem nil_app_l : \(\forall l : \text{natlist}, \)
\([] ++ l = l. \)

Proof.

```
intros l.
```

Can we prove this with *reflexivity*? Why?

```
reflexivity.
Qed.
```
Nil is a neutral element wrt app

Theorem nil_app_l : forall l:natlist,
 l ++ [] = l.

Proof.
 intros l.

Can we prove this with *reflexivity*? Why?
Nil is a neutral element wrt app

Theorem nil_app_l : forall l:natlist,
 l ++ [] = l.
Proof.
 intros l.

Can we prove this with reflexivity? Why?

In environment
l : natlist
Unable to unify "l" with "l ++ []".

How can we prove this result?
We need an induction principle of `natlist`

For some property P we want to prove.

- Show that $P([\])$ holds.
- Given the induction hypothesis $P(l)$ and some number n, show that $P(n :: l)$ holds.

Conclude that $P(l)$ holds for all l.

How do we know this principle? Hint: compare `natlist` with `nat`.
How do we know the induction principle?

Use search

```
Search natlist.
```

which outputs

```
nil: natlist
cons: nat → natlist → natlist
(* trimmed output *)
```

```
natlist_ind: 
  forall P : natlist → Prop,
  P [] →
  (forall (n : nat) (l : natlist), P l → P (n::l)) → forall n : natlist, P n
```
Nil is neutral on the right (1/2)

Theorem nil_app_r : forall l:natlist,
 l ++ [] = l.
Proof.
 intros l.
 induction l.
 - reflexivity.
 -

yields

1 subgoal
n : nat
l : natlist
IHl : l ++ [] = l
______________________________________((1/1)
(n :: l) ++ [] = n :: l
Nil is neutral on the right (2/2)

1 subgoal
n : nat
l : natlist
IHl : l ++ [] = l

__(1/1)
(n :: l) ++ [] = n :: l
Nil is neutral on the right (2/2)

1 subgoal
n : nat
l : natlist
IHl : l ++ [] = l

--(1/1)
(n :: l) ++ [] = n :: l

simpl.
(* app (n::l) [] = n :: (app l []) *)
rewrite -> IHl.
(* n :: (app l []) = n :: l *)
(* ^^^^^^^^^ ^ *)
reflexivity.
(* conclude *)

Can we apply rewrite directly without simplifying?
Hint: before and after stepping through a tactic show/hide notations.
How do we state a theorem that leads to the same proof state (without ltac)?