Introduction to the Theory of Computation

Lecture 3: Induction principle

Tiago Cogumbreiro
Today we will learn...

- Rewriting tactics
- Case analysis tactics
- Induction tactics
- Induction principle
Rewriting terms
Multiple pre-conditions in a lemma

Theorem plus_id_example : forall n m:nat,
 n = m →
 n + n = m + m.
Proof.
 intros n.
 intros m.
Multiple pre-conditions in a lemma

Theorem plus_id_example : forall n m:nat,
 n = m ->
 n + n = m + m.
Proof.
 intros n.
 intros m.

yields

1 subgoal
n, m : nat
---------------------------(1/1)
 n = m -> n + n = m + m
Multiple pre-conditions in a lemma

applying intros H yields

1 subgoal
n, m : nat
H : n = m

______________________________________(1/1)
n + n = m + m

How do we use H? **New tactic**: use `rewrite → H` (lhs becomes rhs)

1 subgoal
n, m : nat
H : n = m

______________________________________(1/1)
m + m = m + m

How do we conclude? Can you write a **Theorem** that replicates the proof-state above?
Let us prove this example

Theorem plus_id_exercise : \(\forall n \ m \ o : \text{nat},\)
\[n = m \rightarrow m = o \rightarrow n + m = m + o. \]

Proof.

(Done in class...)
Consider this recursive function that tests if two naturals are equal.

```coq
Fixpoint beq_nat (n m : nat) : bool :=
  match n with
  | O => match m with
    | O => true
    | S m' => false
  end
  | S n' => match m with
    | O => false
    | S m' => beq_nat n' m'
  end
end.
```
How do we prove this example?

Theorem plus_1_neq_0_firsttry : forall n : nat, beq_nat (plus n 1) 0 = false.

Proof.
intros n.

yields

1 subgoal
n : nat
_______________________________(1/1)
beq_nat (plus n 1) 0 = false
How do we prove this example?

Theorem plus_1_neq_0_firsttry : \(\forall n : \text{nat}, \)
\[\text{beq_nat (plus n 1) 0} = \text{false}. \]

Proof.

 intros n.

 yields

 1 subgoal
n : nat
______________________________________(1/1)
beq_nat (plus n 1) 0 = false

Apply simpl and it does nothing. Apply reflexivity:

In environment
n : nat
Unable to unify "false" with "beq_nat (plus n 1) 0".
Why does simp fail?

Q: Why can't beq_nat (n + 1) be simplified? (Hint: inspect its definition.)
Why does simpl fail?

Q: Why can't beq_nat \((n + 1)\) be simplified? (Hint: inspect its definition.)

A: beq_nat expects the first parameter to be either \(0\) or \(S\ ?n\), but we have an expression \(n + 1\) (or \(\text{plus } n 1\)).
Why does simpl fail?

Q: Why can't beq_nat (n + 1) be simplified? (Hint: inspect its definition.)
A: beq_nat expects the first parameter to be either 0 or S ?n, but we have an expression n + 1 (or plus_n 1).

Q: Can we simplify plus n 1?
Why does simpl fail?

Q: Why can't `beq_nat (n + 1)` be simplified? (Hint: inspect its definition.)

A: `beq_nat` expects the first parameter to be either `0` or `S ?n`, but we have an expression `n + 1` (or `plus n 1`).

Q: Can we simplify `plus n 1`?

A: No because `plus` decreases on the first parameter, not on the second!
Case analysis
Case analysis (1/3)

Let us try to inspect value \(n \). Use: \texttt{destruct } \texttt{n as } \lfloor \lfloor n \rceil \rceil .

2 subgoals

\begin{itemize}
 \item \texttt{beq_nat (0 + 1) 0 = false} \hfill (1/2)
 \item \texttt{beq_nat (S n' + 1) 0 = false} \hfill (2/2)
\end{itemize}

Now we have two goals to prove!

1 subgoal

\begin{itemize}
 \item \texttt{beq_nat (0 + 1) 0 = false} \hfill (1/1)
\end{itemize}

How do we prove this?
Case analysis (2/3)

After we conclude the first goal we get:
This subproof is complete, but there are some unfocused goals:

\[\text{beq_nat (S n' + 1) 0 = false} \]

Use another bullet (-).

1 subgoal
n' : nat

\[\text{beq_nat (S n' + 1) 0 = false} \]

And prove the goal above as well.

- Why can the latter be simplified?
Case analysis (3/3)

- Use: `destruct n as [l | n']` when you want to explicitly name the variables being introduced.
- Otherwise, use: `destruct n` and let Coq automatically name the variables.

Using automatically generated variable names makes the proofs more brittle to change.
Example: prove this lemma (1/4)

Theorem `plus_n_0 : forall n:nat, n = n + 0`.

Proof.
Example: prove this lemma (1/4)

\textbf{Theorem} \(\text{plus}_n_0 : \forall n : \text{nat}, \newline \quad n = n + 0. \)

\textbf{Proof.} Tactic `simpl` does nothing.
Example: prove this lemma (1/4)

Theorem plus_n_0 : forall n:nat, n = n + 0.
Proof.

Tactic simpl does nothing. Tactic reflexivity fails.
Theorem plus_n_0 : \(\forall n:\text{nat}, \newline\quad n = n + 0. \)

Proof.

Tactic `simpl` does nothing. Tactic `reflxivity` fails. Apply `destruct n`.

2 subgoals

----------------- (1/2)
\(0 = 0 + 0 \)

----------------- (2/2)
\(S\ n = S\ n + 0 \)
Example: prove this lemma (2/4)

After proving the first, we get

1 subgoal
n : nat
______________________________________(1/1)
S n = S n + 0

Applying `simplify` yields:

1 subgoal
n : nat
______________________________________(1/1)
S n = S (n + 0)
Example: prove this lemma (2/4)

After proving the first, we get

1 subgoal
n : nat

\[S \ n = S \ n + 0 \]

Applying `simplify` yields:

1 subgoal
n : nat

\[S \ n = S \ (n + 0) \]

Tactic `reflexivity` fails and there is nothing to rewrite.
We need an induction principle of nat

For some property P we want to prove.

- Show that $P(0)$ holds.
- Given the induction hypothesis $P(n)$, show that $P(n + 1)$ holds.

Conclude that $P(n)$ holds for all n.
Example: prove this lemma (3/4)

Apply induction \(n \).

2 subgoals

\[
\begin{align*}
0 &= 0 + 0 \quad (1/2) \\
S\ n &= S\ n + 0 \quad (2/2)
\end{align*}
\]

How do we prove the first goal?

Compare induction \(n \) with destruct \(n \).
Example: prove this lemma (4/4)

After proving the first goal we get

1 subgoal
n : nat
IHn : n = n + 0

S n = S n + 0

applying simpl yields

1 subgoal
n : nat
IHn : n = n + 0

S n = S (n + 0)

How do we conclude this proof?
Theorem mult_0_plus' : forall n m : nat,
(0 + n) * m = n * m.
Proof.
 intros n m.
 assert (H: 0 + n = n). { reflexivity. }
 rewrite → H.
 reflexivity. Qed.

- H is a variable name, you can pick whichever you like.
- Your intermediary result will capture all of the existing hypothesis.
- It may include forall.
- We use braces { and } to prove a sub-goal.