CS420

Introduction to the Theory of Computation

Lecture 27: Course recap + QA

Tiago Cogumbreiro

Exercises E_tm_red_EQ_tm_1 and E_tm_red_EQ_tm_2 are not difficult, as long as you use constructor (_inv) and destructor (_def) theorems.

- When should you use _inv?
- When should you use _def?
- Simplify assumptions run (Build _) with run_simpl_all.
- E_{TM} is a unary predicate; EQ_{TM} is a binary predicate. F3 maps one to the other.

```
See Example 5.26 (pp 237):
Let <M> = p.
```

Function F3 (defined below) maps the input <M> to the output <M, M1>, where M1 is the machine that rejects all inputs.

E_tm_red_EQ_tm_1 and E_tm_red_EQ_tm_2

- For E_tm and EQ_tm constructors: when supplying a turing machine specified as a program P, you need to write Build (fun $i \Rightarrow P$)
- For E_tm and EQ_tm constructors: if you don't know the turing machine, just provide an arbitrary one, the first goal will help you find the right answer.
- If you have trouble applying E_tm_def to your goal, then assert it: assert (Hx:= E_tm_def Machine Word). If you don't know what to provide play with the parameters until the preconditions are trivial.

Textbook solutions for ex_5_6 and ex_5_7

- **5.6** Suppose $A \leq_{\mathrm{m}} B$ and $B \leq_{\mathrm{m}} C$. Then there are computable functions f and g such that $x \in A \iff f(x) \in B$ and $y \in B \iff g(y) \in C$. Consider the composition function h(x) = g(f(x)). We can build a TM that computes h as follows: First, simulate a TM for f (such a TM exists because we assumed that f is computable) on input x and call the output y. Then simulate a TM for g on y. The output is h(x) = g(f(x)). Therefore, h is a computable function. Moreover, $x \in A \iff h(x) \in C$. Hence $A \leq_{\mathrm{m}} C$ via the reduction function h.
- 5.7 Suppose that $A \leq_{\mathrm{m}} \overline{A}$. Then $\overline{A} \leq_{\mathrm{m}} A$ via the same mapping reduction. Because A is Turing-recognizable, Theorem 5.28 implies that \overline{A} is Turing-recognizable, and then Theorem 4.22 implies that A is decidable.

Textbook solution for Theorem 5.22

If $A \leq_{\mathrm{m}} B$ and B is decidable, then A is decidable.

PROOF We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.

- N = "On input w:
 - **1.** Compute f(w).
 - **2.** Run M on input f(w) and output whatever M outputs."

Clearly, if $w \in A$, then $f(w) \in B$ because f is a reduction from A to B. Thus, M accepts f(w) whenever $w \in A$. Therefore, N works as desired.

ex_5_22_a

• Unfold Reduction before you start.

ex_5_22_b

• Search (_ $\leq m$ _). is your friend

ex1 and ex2

- Look at sample code for inspiration
- The table below is important

Term	Usage	Coq	Constructor
P-Run	<mark>run</mark> a program with a given input i and result r	Run p i r	Print Run.
P-Recognizes	a program <mark>recognizes</mark> a language	PRecognizes p L	p_recognizes_def
P- Recognizable	a language is recognizable	Recognizable L	p_recognizable_def
P-Decides	a program <mark>decides</mark> a language	PDecides p L	p_decides_def
P-Decider	a program is a <mark>decider</mark>	PDecider p	p_decider_def
P-Decidable	a language is <mark>decidable</mark>	Decidable L	p_decidable_def

ехЗ

- Recall the operators we have learned
- Look at the examples we have written so far

Abbreviation	Prog	Description
	Call m w	Calls a turing machine
mlet x ← p1 in p2	Seq p1 (fun x ⇒ p2)	Sequence of two progs
ACCEPT	Ret Accept	Accepts
REJECT	Ret Reject	Rejects
LOOP	Ret Loop	Loops
halt_with b	Ret (if b then Accept else Reject)	Rejects/accepts according to bool

ехЗ

- A prog is simply a composition of calls.
- Progs can only manipulate bools/nats, but not Props.

This machine loops if is less than equal 7, otherwise calls a turing machine m with input w.

```
if Nat.leb x 7 then
  LOOP
else
  Call m w
```

ex4 and ex5

- Print Run (Lecture 24)
- You will need to use these constructors

```
Inductive Run: Prog → result → Prop :=
| run_ret:
...
| run_call:
...
| run_seq_cont:
...
| run_seq_loop:
...
```


ex6_1

- Use p_recognizes_def
- Use run_simpl_all to clean up assumptions.
- In the second branch of p_recognizes_def you want to use destruct (run_exists (p i)) as (r, Hr).