CS420

Introduction to the Theory of Computation

Lecture 27: Course recap + QA

Tiago Cogumbreiro

CS420 D> Courserecap+QA D Lecture27 ) Tiago Cogumbreiro



Homework 8 ?/11

CS420 D> Courserecap+QA D Lecture27 ) Tiago Cogumbreiro



Homework 8 %

BOSTON

Exercises E_tm_red_EQ_tm_1 and E_tm_red_EQ_tm_2 are not difficult, as long as you use
constructor (_inv) and destructor (_def) theorems.

e When should you use _inv?
e When should you use _def?
o Simplify assumptions run (Build _) with run_simpl_all.

e Ep,risaunary predicate; EQryy is a binary predicate.
F3 maps one to the other.

See Example 5.26 (pp 237):
Let <M> = p.

Function F3 (defined below) maps the input <M> to the output <M, M1>,
where M1 is the machine that rejects all inputs.

CS420 D> Courserecap+QA D Lecture27 ) Tiago Cogumbreiro



Homework 8 ?/11

F_tm_red_EQ_tm_1 and E_tm_red_EQ_tm_?

e For E_tmand EQ_tm constructors: when supplying a turing machine specified as a
program P, you need to write Build (fun i = P)

e For E_tmand EQ_tm constructors: if you don't know the turing machine, just provide an
arbitrary one, the first goal will help you find the right answer.

o If you have trouble applying E_tm_def to your goal, then assert it: assert (Hx:= E_tm_def
Machine Word). If you don't know what to provide play with the parameters until the pre-

conditions are trivial.

CS420 D> Courserecap+QA D Lecture27 ) Tiago Cogumbreiro



Homework 8 ?/11

Textbook solutions forex_b_6 and ex_bh_7/

5.6 Suppose A <., B and B <., C. Then there are computable functions f and
gsuch thatx € A <= f(z) € Bandy € B < g(y) € C. Consider the
composition function h(xz) = g(f(z)). We can build a TM that computes h as
follows: First, simulate a TM for f (such a TM exists because we assumed that f
is computable) on input x and call the output y. Then simulate a TM for g on y.
The output is h(z) = g(f(x)). Therefore, h is a computable function. Moreover,
r € A<= h(x) € C. Hence A <,, C via the reduction function h.

5.7 Suppose that A <,, A. Then A <,, A via the same mapping reduction. Because A

is Turing-recognizable, Theorem 5.28 implies that A is Turing-recognizable, and
then Theorem 4.22 implies that A is decidable.

CS420 D> Courserecap+QA D Lecture27 ) Tiago Cogumbreiro



Homework 8 A

BOSTON

Textbook solution for Theorem 5.22

N e ) - 31 T T 3 T S———

If A <,, B and B is decidable, then A is decidable.

PROOF We let M be the decider for B and f be the reduction from A to B.
We describe a decider IV for A as follows.

N = “On input w:
1. Compute f(w).
2. Run M on input f(w) and output whatever M outputs.”

Clearly, if w € A, then f(w) € B because f is a reduction from A to B. Thus,
M accepts f(w) whenever w € A. Therefore, N works as desired.

CS420 D> Courserecap+QA D Lecture27 ) Tiago Cogumbreiro



Homework 8 ?/11

ex_h_77_a

e Unfold Reduction before you start.

ex_h_27_D

e Search (_ <m _). isyour friend

CS420 D> Courserecap+QA D Lecture27 ) Tiago Cogumbreiro



Homework /




Homework /

ex1 and ex?

e Look at sample code for inspiration
e The table below is important

A,

UMASS
BOSTON

Term Usage Coq Constructor

P_Run ;unaprogram with a given input i and result Run p i r Print Run.
P-Recognizes aprogramrecognizes alanguage ERecognlzes P p_recognizes_def
P- : : . .
ecerialkle alanguageis recognizable Recognizable L p_recognizable_def
P-Decides aprogram decides alanguage PDecides p L p_decides_def
P-Decider aprogram s a decider PDecider p p_decider_def
P-Decidable alanguage is decidable Decidable L p_decidable_def

CS420 D> Courserecap+QA D Lecture27 ) Tiago Cogumbreiro



Homework /

ex3

e Recall the operators we have learned
e Look at the examples we have written so far

A,

UMASS
BOSTON

Abbreviation Prog Description
Call m w Calls a turing machine
E%et x < plan Seq p1 (fun x = p2) Sequence of two progs
ACCEPT Ret Accept Accepts
REJECT Ret Reject Rejects
LOOP Ret Loop Loops
halt with b Ret (if b then Accept else Rejects/accepts according to

Reject)

bool

CS420 D> Courserecap+QA D Lecture27 ) Tiago Cogumbreiro



Homework / ?/11

ex3

e A progissimply a composition of calls.
e Progs can only manipulate bools/nats, but not Props.

This machine loops if is less than equal 7, otherwise calls a turing machine m with input w.

if Nat.leb x 7 then
LOOP

else
Call m w

CS420 D> Courserecap+QA D Lecture27 ) Tiago Cogumbreiro



Homework / ?/11

ex4 and exb

e Print Run (Lecture 24)
e You will need to use these constructors

Inductive Run: Prog — result — Prop :=
| run_ret:

| run_call:
| run_seq_cont:

| run_seq_loop:

CS420 D> Courserecap+QA D Lecture27 ) Tiago Cogumbreiro



Homework / %

ex6_

e Usep_recognizes_def
e Use run_simpl_all to clean up assumptions.

e Inthe second branch of p_recognizes_def you want to use destruct (run_exists (p i))
as (r, Hr).

CS420 D> Courserecap+QA D Lecture27 ) Tiago Cogumbreiro




