Today we learn

- Decidability results
- Halting problem
- Emptiness for TM is undecidable

Section 4.2, 5.1
Decidability and Recognizability

Understanding the limits of decision problems

Implementation: algorithm that answers a decision problem, that is algorithm says YES whenever decision problem says YES.

<table>
<thead>
<tr>
<th>Concept</th>
<th>Intuition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recognizable</td>
<td>Can we implement the problem?</td>
<td>A_{TM}</td>
</tr>
<tr>
<td>Decidable</td>
<td>Can we implement the problem and prove it terminates?</td>
<td>A_{REX}</td>
</tr>
<tr>
<td>Undecidable</td>
<td>Impossible to say NO without looping</td>
<td>A_{TM}</td>
</tr>
<tr>
<td>Unrecognizable</td>
<td>Impossible to say YES and NO without looping</td>
<td>???</td>
</tr>
</tbody>
</table>

Why is A_{TM} recognizable?
Decidability and Recognizability

Understanding the limits of decision problems

<table>
<thead>
<tr>
<th>Concept</th>
<th>YES without looping</th>
<th>NO without looping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recognizable</td>
<td>Possible</td>
<td>Maybe</td>
</tr>
<tr>
<td>Decidable</td>
<td>Possible</td>
<td>Possible</td>
</tr>
<tr>
<td>Undecidable</td>
<td>Maybe</td>
<td>Impossible</td>
</tr>
<tr>
<td>Unrecognizable</td>
<td>Impossible</td>
<td>Impossible</td>
</tr>
</tbody>
</table>

- **Possible**: we known an implementation (∃)
- **Impossible**: no implementation is possible (∀)
Require Import Turing.Turing.

Lemma decidable_to_recognizable:
 forall L,
 Decidable L ->
 Recognizable L.
Proof.
Admitted.

Lemma unrecognizable_to_undecidable:
 forall L,
 ~ Recognizable L ->
 ~ Decidable L.
Proof.
Admitted.
Corollary 4.23

\overline{A}_{TM} is unrecognizable
Corollary 4.23: $\overline{A_{TM}}$ is unrecognizable

Lemma co_a_tm_not_recognizable:

\[\sim \text{Recognizable (compl A_tm)}. \]

Done in class...
Corollary 4.18

Some languages are unrecognizable
Corollary 4.18 Some languages are unrecognizable

Proof.
Corollary 4.18 Some languages are unrecognizable

Proof. An example of an unrecognizable language is: $\overline{A_{TM}}$
If L is decidable, then \overline{L} is decidable.
On pen-and-paper proofs

Theorem 4.22

A language is decidable iff it is Turing-recognizable and co-Turing-recognizable.

In other words, a language is decidable exactly when both it and its complement are Turing-recognizable.

Proof We have two directions to prove. First, if A is decidable, we can easily see that both A and its complement \overline{A} are Turing-recognizable. Any decidable language is Turing-recognizable, and the complement of a decidable language also is decidable.
Proof of Theorem 4.22 Taken from the book.

First, if A is decidable, we can easily see that both A and its complement \overline{A} are Turing-recognizable.

- A is decidable, then A is recognizable by definition.
- A is decidable, then \overline{A} is recognizable? Why?

Any decidable language is Turing-recognizable,

- Yes, by definition.

and the complement of a decidable language also is decidable.

- Why?
If L is decidable, then \overline{L} is decidable

1. Let M decide L.
2. Create a Turing machine that negates the result of M.

 Definition $\text{inv } M \ w :=$

 mlet b ← Call m w in halt_with (negb b).

3. Show that $\text{inv } M$ recognizes

 $\text{Inv}(L) = \{w \mid M \text{ rejects } w\}$

4. Show that the result of $\text{inv } M$ for any word w is the
 negation of running M with m, where negation of
 accept is reject, reject is accept, and loop is loop.

5. The goal is to show that $\text{inv } M$ recognizes \overline{L} and is
 decidable.

 What about loops? If M loops on some word w, then $\text{inv } M$ would also
 loop. How is does $\text{inv } M$ recognize \overline{L}?
If L is decidable, then \overline{L} is decidable

1. Let M decide L.
2. Create a Turing machine that negates the result of M.

Definition \(\text{inv } M \ w := \)
\[
\text{mlet } b \leftarrow \text{Call } m \ w \text{ in } \text{halt_with (negb b)}.\]

3. Show that \(\text{inv } M \) recognizes
 \[\text{Inv}(L) = \{ w \mid M \text{ rejects } w \}\]
4. Show that the result of \(\text{inv } M \) for any word w is the
 negation of running M with m, where negation of
 accept is reject, reject is accept, and loop is loop.
5. The goal is to show that \(\text{inv } M \) recognizes \overline{L} and is
 decidable.

What about loops? If M loops on some word w, then \(\text{inv } M \) would also
loop. How does \(\text{inv } M \) recognize \overline{L}?

Recall that L is decidable, so M will never loop.
If L is decidable, then \overline{L} is decidable

Continuation...

Part 1. Show that $\text{inv } M$ recognizes \overline{L}

We must show that: If M decides L and $\text{inv } M$ recognizes $\text{Inv}(L)$, then $\text{inv } M$ is decidable.

It is enough to show that if M decides L, then $\text{Inv}(L) = \overline{L}$.

Show proof inv_compl_equiv.

Part 2. Show that $\text{inv } M$ is a decider

Show proof decides_to_compl.
Chapter 5: Undecidability
\text{T}HALTTM: Termination of TM

Will this TM halt given this input?

(The Halting problem)
HALT\(_\text{TM}\) is undecidable

Theorem 5.1: \(\text{HALT}_{\text{TM}}\) loops for some input

Set-based encoding

\[
\text{HALT}_{\text{TM}} = \{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w\}
\]

Function-based encoding

\[
\begin{align*}
\text{def } & \text{HALT}_{\text{TM}}(M, w): \\
& \text{return } M \text{ halts on } w
\end{align*}
\]

Proof

Proof idea: Given Turing machine acc, show that acc decides \(A_{TM}\).

\[
\begin{align*}
\text{def } & \text{acc}(M, w): \\
& \text{if } \text{HALT}_{\text{TM}}(M, w): \\
& \quad \text{return } M(w) \\
& \text{else:} \\
& \quad \text{return } \text{False}
\end{align*}
\]
HALT_{T_M} is undecidable

Theorem 5.1: Proof overview

Apply Thm 4.11 to (H) "acc decides A_{TM}" and reach a contradiction. To prove H:

1. Show that acc recognizes Acc_D
2. Show that $Acc_D = A_{TM}$ (why do we need this step?)
3. Show that acc is decidable

Definition acc D p :=

\[
\text{let } (M, w) := \text{decode_machine_input p in}
\]

\[
m\text{let } b \leftarrow \text{Call D p in } (* \text{HALT_TM(M, w)} *)
\]

\[
\text{if } b \text{ then Call M w else REJECT.}
\]

Definition acc_lang D p :=

\[
\text{let } (M, w) := \text{decode_machine_input p in}
\]

\[
\text{run D p = Accept } \wedge \text{run M w = Accept.}
\]

\[Acc_D = \{\langle M, w \rangle | D \text{ accepts } \langle M, w \rangle \wedge M \text{ accepts } w\}\]
HALT\textsubscript{TM} is undecidable

Part 1. Show that acc recognizes Acc_D

1. Show that if acc w accepts, then $p \in \text{Acc}_D$, ie, D accepts $\langle M, p \rangle$ and M accepts w.

```
1 Definition acc p :=
2 let (M, w) := decode_machine_input p in
3 mlet b ← Call D p in
4 if b then Call M w else REJECT.
```
HALT \(_{TM}\) is undecidable

Part 1. Show that acc recognizes \(\text{Acc}_D\)

1. Show that if acc \(w\) accepts, then \(p \in \text{Acc}_D\), ie, \(D\) accepts \(\langle M, p \rangle\) and \(M\) accepts \(w\).

 - Case analysis on \(\text{Call } D \langle M, w \rangle\)

```
1 Definition acc p :=
2   let (M, w) := decode_machine_input p in
3   mlet b <- Call D p in
4   if b then Call M w else REJECT.
```
HALT_\text{TM} is undecidable

Part 1. Show that acc recognizes Acc_\text{D}

1. Show that if acc w accepts, then $p \in \text{Acc}_\text{D}$, ie, D accepts $\langle M, p \rangle$ and M accepts w.
 - Case analysis on Call D <M,w>
 1. D accepts <M,w>, then we get that M accepts w
\(\text{HALT}_{TM} \) is undecidable

Part 1. Show that acc recognizes \(\text{Acc}_D \)

1. Show that if acc \(w \) accepts, then \(p \in \text{Acc}_D \), ie, \(D \) accepts \(\langle M, p \rangle \) and \(M \) accepts \(w \).
 - Case analysis on \(\text{Call D} \ <M, w> \)
 1. \(D \) accepts \(<M, w> \), then we get that \(M \) accepts \(w \)
 2. \(D \) rejects \(<M, w> \), then contradiction

2. Show that if \(w \in \text{Acc}_D \), then acc \(w \) accepts.
HALT\textsubscript{TM} is undecidable

Part 1. Show that acc recognizes \(\text{Acc}_D \)

1. Show that if \(\text{acc} \ w \) accepts, then \(p \in \text{Acc}_D \), ie, \(D \) accepts \(\langle M, p \rangle \) and \(M \) accepts \(w \).
 - Case analysis on Call D \(\langle M, w \rangle \)
 1. \(D \) accepts \(\langle M, w \rangle \), then we get that \(M \) accepts \(w \)
 2. \(D \) rejects \(\langle M, w \rangle \), then contradiction

2. Show that if \(w \in \text{Acc}_D \), then acc \(w \) accepts.
 - Given \(D \) accepts \(\langle M, w \rangle \) and \(M \) accepts \(w \), show that acc \(w \) accepts
HALT_{TM} is undecidable

Part 1. Show that acc recognizes \(\text{Acc}_D \)

1. Show that if acc \(w \) accepts, then \(p \in \text{Acc}_D \), ie, \(D \) accepts \(\langle M, p \rangle \) and \(M \) accepts \(w \).
 - Case analysis on \(\text{Call } D <M, w> \)
 1. \(D \) accepts \(<M, w> \), then we get that \(M \) accepts \(w \)
 2. \(D \) rejects \(<M, w> \), then contradiction

2. Show that if \(w \in \text{Acc}_D \), then acc \(w \) accepts.
 - Given \(D \) accepts \(\langle M, w \rangle \) and \(M \) accepts \(w \), show that acc \(w \) accepts
 - Rewrite each in code, get accept
\(\text{HALT}_{TM} \) is undecidable

Part 2. Show that \(\text{Acc}_D = A_{TM} \)

1. Show that if \(\langle M, w \rangle \in \text{Acc}_D \), then \(\langle M, p \rangle \in A_{TM} \)
HALT_{TM} is undecidable

Part 2. Show that $\text{Acc}_D = A_{TM}$

1. Show that if $\langle M, w \rangle \in \text{Acc}_D$, then $\langle M, p \rangle \in A_{TM}$
 ○ We have M accepts w from $\langle M, p \rangle \in \text{Acc}_D$
HALT\textsubscript{TM} is undecidable

Part 2. Show that \(\text{Acc}_D = A_{\text{TM}}\)

1. Show that if \(\langle M, w \rangle \in \text{Acc}_D\), then \(\langle M, p \rangle \in A_{\text{TM}}\)
 - We have \(M\) accepts \(w\) from \(\langle M, p \rangle \in \text{Acc}_D\)

2. Show that if (i) \(\langle M, w \rangle \in A_{\text{TM}}\), then \(\langle M, w \rangle \in \text{Acc}_D\), ie
\(\text{HALT}_{TM} \) is undecidable

Part 2. Show that \(\text{Acc}_D = A_{TM} \)

1. Show that if \(\langle M, w \rangle \in \text{Acc}_D \), then \(\langle M, p \rangle \in A_{TM} \)
 - We have \(M \) accepts \(w \) from \(\langle M, p \rangle \in \text{Acc}_D \)
2. Show that if (i) \(\langle M, w \rangle \in A_{TM} \), then \(\langle M, w \rangle \in \text{Acc}_D \), ie \(M \) accepts \(w \) and \(D \) accepts \(\langle M, w \rangle \)
HALT_{TM} is undecidable

Part 2. Show that $\text{Acc}_D = \text{A}_{TM}$

1. Show that if $\langle M, w \rangle \in \text{Acc}_D$, then $\langle M, p \rangle \in \text{A}_{TM}$
 - We have M accepts w from $\langle M, p \rangle \in \text{Acc}_D$

2. Show that if (i) $\langle M, w \rangle \in \text{A}_{TM}$, then $\langle M, w \rangle \in \text{Acc}_D$, ie M accepts w and D accepts $\langle M, w \rangle$
 - We have that M accepts w from (i)
$HALT_{TM}$ is undecidable

Part 2. Show that $Acc_D = A_{TM}$

1. Show that if $\langle M, w \rangle \in Acc_D$, then $\langle M, p \rangle \in A_{TM}$
 - We have M accepts w from $\langle M, p \rangle \in Acc_D$

2. Show that if (i) $\langle M, w \rangle \in A_{TM}$, then $\langle M, w \rangle \in Acc_D$, ie M accepts w and D accepts $\langle M, w \rangle$
 - We have that M accepts w from (i)
 - We have that D accepts $\langle M, w \rangle$ since M halts.
HALT_{TM} is undecidable

Part 3. Show that acc is decidable

Proof by contradiction. Assume acc loops with $p = \langle M, w \rangle$ and reach a contradiction.
$HALT_{TM}$ is undecidable

Part 3. Show that acc is decidable

Proof by contradiction. Assume acc loops with $p = \langle M, w \rangle$ and reach a contradiction. If acc loops with p, then D accepts p and M loops with w, or D loops with p^\dagger.
\(\text{HALT}_{\text{TM}} \text{ is undecidable} \)

Part 3. Show that acc is decidable

Proof by contradiction. Assume acc loops with \(p = \langle M, w \rangle \) and reach a contradiction. If acc loops with \(p \), then \(D \) accepts \(p \) and \(M \) loops with \(w \), or \(D \) loops with \(p^\dagger \)

- If \(D \) accepts \(p \), then \(M \) halts with \(w \), which contradicts with \(M \) loops with \(w \)
HALT\textsubscript{TM} is undecidable

Part 3. Show that \texttt{acc} is decidable

Proof by contradiction. Assume \texttt{acc} loops with $p = \langle M, w \rangle$ and reach a contradiction.

If \texttt{acc} loops with p, then D accepts p and M loops with w, or D loops with p\(^\dagger\)

- If D accepts p, then M halts with w, which contradicts with M loops with w
- If D loops with p, we reach a contradiction because D is a decider

\(^\dagger\): Why?
E_{TM}: Emptiness of TM

(Is the language of this TM empty?)
Theorem 5.2: E_{TM} is undecidable

Set-based

$E_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset\}$

Proof overview: show that acc decides A_{TM}

```
def build_M1(M, w):
    def M1(x):
        if x == w:
            return M accepts w
        else:
            return False
    return M1
```

```
def acc(M, w):
    b = E_TM(build_M1(M, w))
    return not b
```

Function-based

```
def E_TM(M):
    return L(M) == {}
```

- $w \in L(M1) \iff \langle M1 \rangle \notin E_{TM}$
- $w \in L(M1) \iff w \in L(M)$
Theorem 5.2: E_{TM} is undecidable

Proof follows by contradiction.
Theorem 5.2: E_{TM} is undecidable

Proof follows by contradiction.

1. Show that E_{TM} decidable implies A_{TM} decidable.
Theorem 5.2: E_{TM} is undecidable

Proof follows by contradiction.

1. Show that E_{TM} decidable implies A_{TM} decidable.
2. Reach contradiction by applying Thm 4.11 to (1)
Theorem 5.2: E_{TM} is undecidable

Proof follows by contradiction.

1. Show that E_{TM} decidable implies A_{TM} decidable.
2. Reach contradiction by applying Thm 4.11 to (1)

Goal: E_{TM} decidable implies A_{TM} decidable
Theorem 5.2: E_{TM} is undecidable

Proof follows by contradiction.

1. Show that E_{TM} decidable implies A_{TM} decidable.
2. Reach contradiction by applying Thm 4.11 to (1)

Goal: E_{TM} decidable implies A_{TM} decidable

Let D decide E_{TM}.

1. Show that acc recognizes A_{TM}
Theorem 5.2: E_{TM} is undecidable

Proof follows by contradiction.

1. Show that E_{TM} decidable implies A_{TM} decidable.
2. Reach contradiction by applying Thm 4.11 to (1)

Goal: E_{TM} decidable implies A_{TM} decidable

Let D decide E_{TM}.

1. Show that acc recognizes A_{TM}
 1. Show that $A_{TM} = Acc_D$ where $Acc_D = \{ \langle M, w \rangle \mid L(M1_{M,w}) \neq \emptyset \}$
 (e_tm_a_tm_spec)
Theorem 5.2: E_{TM} is undecidable

Proof follows by contradiction.

1. Show that E_{TM} decidable implies A_{TM} decidable.
2. Reach contradiction by applying Thm 4.11 to (1)

Goal: E_{TM} decidable implies A_{TM} decidable

Let D decide E_{TM}.

1. Show that acc recognizes A_{TM}
 1. Show that $A_{TM} = Acc_D$ where $Acc_D = \{\langle M, w \rangle \mid L(M1_M,w) \neq \emptyset\}$ (e_tm_a_tm_spec)
 2. Show that acc recognizes Acc_D (E_tm_A_tm_recognizes)
Theorem 5.2: E_{TM} is undecidable

Proof follows by contradiction.

1. Show that E_{TM} decidable implies A_{TM} decidable.
2. Reach contradiction by applying Thm 4.11 to (1)

Goal: E_{TM} decidable implies A_{TM} decidable

Let D decide E_{TM}.

1. Show that acc recognizes A_{TM}
 1. Show that $A_{TM} = Acc_D$ where $Acc_D = \{ \langle M, w \rangle \mid L(M_{1M,w}) \neq \emptyset \}$ (e_tm_a_tm_spec)
 2. Show that acc recognizes Acc_D (E_tm_A_tm_recognizes)
2. Show that acc is a decider (decider_E_tm_A_tm)
Theorem 5.2: E_{TM} is undecidable

Part 1.1: Show that $A_{TM} = Acc_D$ where $Acc_D = \{\langle M, w \rangle \mid L(M1_{M,w}) \neq \emptyset \}$

Theorem not_empty_to_accept

1. Show that: If $L(M1_{M,w}) \neq \emptyset$, then M accepts w.
Theorem 5.2: E_{TM} is undecidable

Part 1.1: Show that $A_{TM} = Acc_D$ where $Acc_D = \{ \langle M, w \rangle \mid L(M_1, w) \neq \emptyset \}$

Theorem not_empty_to_accept

1. Show that: If $L(M_1, w) \neq \emptyset$, then M accepts w.

 - Case analysis on running M with input w:
Theorem 5.2: E_{TM} is undecidable

Part 1.1: Show that $A_{TM} = \text{Acc}_D$ where \(\text{Acc}_D = \{ \langle M, w \rangle \mid L(M_1, w) \neq \emptyset \} \)

Theorem not_empty_to_accept

1. Show that: If $L(M_1, w) \neq \emptyset$, then M accepts w.
 - Case analysis on running M with input w:
 - Case (a) M accepts w: use assumption to conclude
Theorem 5.2: E_{TM} is undecidable

Part 1.1: Show that $A_{TM} = \text{Acc}_D$ where $\text{Acc}_D = \{\langle M, w \rangle \mid L(M_1, w) \neq \emptyset\}$

Theorem not_empty_to_accept

1. Show that: If $L(M_1, w) \neq \emptyset$, then M accepts w.
 - Case analysis on running M with input w:
 - Case (a) M accepts w: use assumption to conclude
 - Case (b) M rejects w: we can conclude that $L(M_1, w) = \emptyset$ from (b)
Theorem 5.2: E_{TM} is undecidable

Part 1.1: Show that $A_{TM} = \text{Acc}_D$ where $\text{Acc}_D = \{ \langle M, w \rangle \mid L(M_1, w) \neq \emptyset \}$

Theorem not_empty_to_accept

1. Show that: If $L(M_1, w) \neq \emptyset$, then M accepts w.
 - Case analysis on running M with input w:
 - Case (a) M accepts w: use assumption to conclude
 - Case (b) M rejects w: we can conclude that $L(M_1, w) = \emptyset$ from (b)
 - Case (c) M loops with w: same as above
Theorem 5.2: E_{TM} is undecidable

Part 1.1: Show that $A_{TM} = Acc_D$ where $Acc_D = \{ \langle M, w \rangle \mid L(M_{1,M,w}) \neq \emptyset \}$

Theorem accept_to_not_empty

2. Show that: If M accepts w, then $L(M_{1,M,w}) \neq \emptyset$.
Theorem 5.2: E_{TM} is undecidable

Part 1.1: Show that $A_{TM} = Acc_D$ where $Acc_D = \{\langle M, w \rangle \mid L(M1_{M,w}) \neq \emptyset\}$

Theorem accept_to_not_empty

2. Show that: If M accepts w, then $L(M1_{M,w}) \neq \emptyset$.
 1. Proof follows by contradiction: assume $L(M1_{M,w}) = \emptyset$.
Theorem 5.2: E_{TM} is undecidable

Part 1.1: Show that $A_{TM} = Acc_D$ where $Acc_D = \{\langle M, w \rangle \mid L(M_1, w) \neq \emptyset\}$

Theorem accept_to_not_empty

2. Show that: If M accepts w, then $L(M_1, w) \neq \emptyset$.
 1. Proof follows by contradiction: assume $L(M_1, w) = \emptyset$.
 2. We know that M_1, w does not accept w from (2.1)
Theorem 5.2: E_{TM} is undecidable

Part 1.1: Show that $A_{TM} = Acc_D$ where $Acc_D = \{\langle M, w \rangle \mid L(M_1, w) \neq \emptyset\}$

Theorem accept_to_not_empty

2. Show that: If M accepts w, then $L(M_1, w) \neq \emptyset$.
 1. Proof follows by contradiction: assume $L(M_1, w) = \emptyset$.

2. We know that M_1, w does not accept w from (2.1)

3. To contradict 2.2, we show that M_1, w accepts w
Theorem 5.2: E_{TM} is undecidable

Part 1.1: Show that $A_{TM} = Acc_D$ where $Acc_D = \{ \langle M, w \rangle \mid L(M_{1,M,w}) \neq \emptyset \}$

Theorem accept_to_not_empty

2. Show that: If M accepts w, then $L(M_{1,M,w}) \neq \emptyset$.
 1. Proof follows by contradiction: assume $L(M_{1,M,w}) = \emptyset$.
 2. We know that $M_{1,M,w}$ does not accept w from (2.1)
 3. To contradict 2.2, we show that $M_{1,M,w}$ accepts w
 1. Since $x = w$ and (2.1), then $M_{1,M,w}$ accepts w