CS420

Introduction to the Theory of Computation

Lecture 22: Undecidability

Tiago Cogumbreiro
Today we will learn...

- Turing Machine theory in Coq
- Undecidability
- Unrecognizability

Section 4.2
Turing Machine theory in Coq
Turing Machine theory in Coq

- **What?** I am implementing the Sipser book in Coq.
- **Why?**
 - So that we can dive into any proof at any level of detail.
 - So that you can inspect any proof and step through it on your own.
 - So that you can ask why and immediately have the answer.

Do you want to help out?
Why is proving important to CS?

- **Generality is important.**
 Whenever we implement a program, we are implicitly proving some notion of correctness in our minds (the program is the proof).

- **Rigour is important.**
 The importance of having precise definitions. Fight ambiguity!

- **Assume nothing and question everything.**
 In formal proofs, we are pushed to ask why? And we have a framework to understand why.

- **Models are important.**
 The basis of formal work is abstraction (or models), e.g., Turing machines as models of computers; REGEX vs DFAs vs NFAs.

What follows is a description of our Coq implementation.
Turing Machine Theory in Coq

Unspecified input/machines

For the remainder of this module we leave the input (string) and a Turing Machine unspecified.

```coq
Variable input: Type.
Variable machine: Type.
```
Turing Machine Theory in Coq

Unspecified input/machines

For the remainder of this module we leave the input (string) and a Turing Machine unspecified.

```coq
Variable input: Type.
Variable machine: Type.
```

Running a TM

We can run any Turing Machine given an input and know whether or not it accepts, rejects, or loops on a given input. We leave running a Turing Machine unspecified.

```coq
Inductive result := Accept | Reject | Loop.
Variable run: machine \rightarrow input \rightarrow result.
```
What is a language?

A language is a predicate: a formula parameterized on the input.

Definition \(\text{lang} := \text{input} \rightarrow \text{Prop}. \)

Defining a set/language

Set builder notation

\[
L = \{ x \mid P(x) \}
\]

Functional encoding

\[
L(x) \overset{\text{def}}{=} P(x)
\]

Defining membership

Set membership

\[
x \in L
\]

Functional encoding

\[
L(x)
\]
Example

Set builder example

\[L = \{a^n b^n \mid n \geq 0\} \]

Functional encoding

\[L(x) \stackrel{\text{def}}{=} \exists n, x = a^n b^n \]
The language of a TM

Set builder notation

The language of a TM can be defined as:

\[L(M) = \{ w \mid M \text{ accepts } w \} \]

Functional encoding

\[L_M(w) \overset{\text{def}}{=} M \text{ accepts } w \]

In Coq

Definition Lang (m: machine) : lang := fun w => run m w = Accept.
Recognizes

We give a formal definition of recognizing a language. We say that M recognizes L if, and only if, M accepts w whenever $w \in L$.

\textbf{Definition} Recognizes (m:machine) (L:lang) := forall w, run m w = Accept \leftrightarrow L w.

\textbf{Examples}

- Saying M recognizes $L = \{a^n b^n \mid n \geq 0\}$ is showing that there exist a proof that shows that all inputs in language L are accepted by M and vice-versa.
- Trivially, M recognizes $L(M)$.

CS420 ☽ Undecidability ☽ Lecture 22 ☽ Tiago Cogumbleiro
We will prove 4 theorems

- Theorem 4.11 A_{TM} is undecidable
- Theorem 4.22 L is decidable if, and only if, L is recognizable and co-recognizable
- Corollary 4.23 \overline{A}_{TM} is unrecognizable
- Corollary 4.18 Some languages are unrecognizable

Why?

- We will learn that we cannot write a program that decides if a TM accepts a string
- We can define decidability in terms of recognizability+complement
- There are languages that cannot be recognized by some program
Theorem 4.11

A_{TM} is undecidable
Theorem 4.11

Functional view of A_{TM}

```python
def A_TM(M, w):
    return M accepts w
```

Theorem 4.11: A_{TM} is undecidable

Show that A_{TM} loops for some input.

Proof idea: Given a Turing machine

```python
def negator(w):
    # $w = <M>
    M = decode_machine w
    b = A_TM(M, w) # Decider D checks if M accepts $<M>$
    return not b # Return the opposite
```

Given that A_{TM} does not terminate, what is the result of negator(negator)?
Theorem 4.11

\(A_{TM} \) is undecidable

\[A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts } w \} \]

Lemma no_decides_a_tm: ~ exists m, Decides m A_tm.

1. Proof follows by contradiction.
2. Let \(D \) be the decider of \(A_{TM} \)
3. Consider the negator machine:

```python
def negator(w):
    M = decode_machine w
    b = call D <M, w>  # Same as: A_TM(M, <M>)
    return not b  # Return the opposite
```

If we expand D and ignore decoding we get:

def negator(f):
 return not f(f)
Theorem 4.11: A_{TM} is undecidable

1. def negator(w):
2. M = decode_machine w
3. b = call D <M, w> # $A_{TM}(M, <M>)$?
4. return not b # Return the opposite

$A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts } w\}$

4. Let negator be N. Case analysis on the result of running N with $\langle N \rangle$ reach contradiction.
5. Case N accepts $\langle N \rangle$, or negator(negator).
Theorem 4.11: A_{TM} is undecidable

1. `def negator(w):`
2. `M = decode_machine w`
3. `b = call D <M, w> # A_{TM}(M, <M>)?`
4. `return not b # Return the opposite`

$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts } w \}$

4. Let negator be N. Case analysis on the result of running N with $\langle N \rangle$ reach contradiction.
5. Case N accepts $\langle N \rangle$, or negator(negator).
 1. If N accepts $\langle N \rangle$, then D rejects $\langle N, \langle N \rangle \rangle$
 2. By the definition of D (via A_{TM}), then N rejects $\langle N \rangle$. **Contradiction!**
Theorem 4.11: A_{TM} is undecidable

1. def negator(w):
2. M = decode_machine w
3. b = call D <M, w> # $A_{TM}(M, <M>)$?
4. return not b # Return the opposite

$A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts } w\}$

4. Let negator be N. Case analysis on the result of running N with $\langle N \rangle$ reach contradiction.
5. Case N accepts $\langle N \rangle$, or negator(negator).
 1. If N accepts $\langle N \rangle$, then D rejects $\langle N, \langle N \rangle \rangle$
 2. By the definition of D (via A_{TM}), then N rejects $\langle N \rangle$. **Contradiction!**
6. Case N rejects $\langle N \rangle$.
Theorem 4.11: A_{TM} is undecidable

4. Let negator be N. Case analysis on the result of running N with $\langle N \rangle$ reach contradiction.

5. Case N accepts $\langle N \rangle$, or negator(negator).
 1. If N accepts $\langle N \rangle$, then D rejects $\langle N, \langle N \rangle \rangle$
 2. By the definition of D (via A_{TM}), then N rejects $\langle N \rangle$. **Contradiction!**

6. Case N rejects $\langle N \rangle$.
 1. If N rejects $\langle N \rangle$, then D accepts $\langle N, \langle N \rangle \rangle$
 2. Thus, by definition of D (via A_{TM}), then N accepts $\langle N \rangle$. **Contradiction!**
Theorem 4.11: A_{TM} is undecidable

1. def negator(w):
2. M = decode_machine w
3. b = call D <M, w> # M accepts $<M>$?
4. return not b # Return the opposite

$A_{TM} = \{\langle M, w \rangle | M \text{ is a TM that accepts } w \}$

7. Case N loops $\langle N \rangle$.
Theorem 4.11: A_{TM} is undecidable

1. def negator(w):
2. M = decode_machine(w)
3. b = call D <M, w> # M accepts <M>?
4. return not b # Return the opposite

$A_{TM} = \{ \langle M, w \rangle | M \text{ is a TM that accepts } w \}$

7. Case N loops $\langle N \rangle$.
 1. If N loops $\langle N \rangle$, then D accepts $\langle N, \langle N \rangle \rangle$
 2. Thus, by definition of D (via A_{TM}), then N accepts $\langle N \rangle$. **Contradiction!**
Understanding the Coq formalism

Pseudo-code as a mini-language

1. Call $M \ w$
 Use the Universal Turing machine to call a machine M with input w,
 Returns whatever M returns by processing w

2. mlet x ← P1 in P2
 Runs pseudo-program P1; if P1 halts, passes a boolean with the result of acceptance to P2. If P1 loops, then the whole pseudo-program loops.

3. Ret r
 A Turing Machine that returns whatever is in r.

 Abbreviations: Ret Accept = ACCEPT, Ret Reject = REJECT, and Ret Loop = LOOP.

This language is enough to prove the results in Section 4.2.
The negator

In Python

def negator(w):
 M = decode_machine w
 b = call D <M, w> # M accepts <M>?
 return not b # Return the opposite

In Coq

Definition negator D w :=
let M := decode_machine w in
mlet b := Call D << M, w>> in
halt_with (negb b).

- D is a parameter of a Turing machine, given \(\langle M, w \rangle \) decides if \(M \) accepts \(w \)
- \(w \) is a serialized Turing machine \(\langle M \rangle \)
- \(\langle M, w \rangle \) is the serialized pair \(M \) and \(w \)
- \(b \) takes the result of calling \(D \) with \(\langle M, w \rangle \)
- halt the machine with negation of \(b \)
Theorem 4.22

L decidable iff L is recognizable + co-recognizable
Theorem 4.22

L decidable iff L recognizable and L co-recognizable

Recall that L co-recognizable is \overline{L}.

Complement

$\overline{L} = \{w \mid w \notin L\}$

Or, $\overline{L} = \Sigma^* - L$
Theorem 4.22

L decidable iff L recognizable and L co-recognizable

Proof. We can divide the above theorem in the following three results.

1. If L decidable, then L is recognizable.
2. If L decidable, then L is co-recognizable.
3. If L recognizable and L co-recognizable, then L decidable.
Part 1. If L decidable, then L is recognizable.

Proof.
Part 1. If L decidable, then L is recognizable.

Proof.
Unpacking the definition that L is decidable, we get that L is recognizable by some Turing machine M and M is a decider. Thus, we apply the assumption that L is recognizable.
Part 2: If L decidable, then L is co-recognizable.

Proof.
Part 2: If L decidable, then \overline{L} is co-recognizable.

Proof.

1. We must show that if L is decidable, then \overline{L} is decidable. \[†\]
2. Since \overline{L} is decidable, then \overline{L} is recognizable.

\[†\]: Why? We prove in the next lesson.