CS420

Introduction to the Theory of Computation

Lecture 20: Turing Machines

Tiago Cogumbreiro

Today we will learn...

- Recap exercises
- TM configuration and configuration history
- TM acceptance
- Variants of Turing Machines
 - Multi-tape
 - Nondeterministic
- Section 3.1, 3.2, and 3.3

Supplementary material

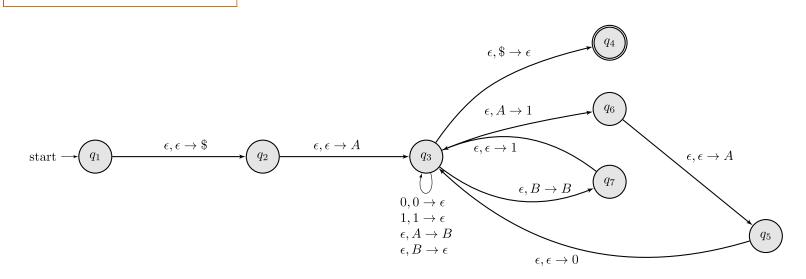
- <u>Professor Harry Porter's video</u>
- Professor Dan Gusfield's video
- <u>Turing Machines</u>, <u>Stanford Encyclopedia of Philosophy</u>

Convert the following grammar into a PDA

 $egin{array}{c} A
ightarrow 0A1 \mid B \ B
ightarrow 1B \mid \epsilon \end{array}$

Convert the following grammar into a PDA

 $egin{array}{c} A
ightarrow 0A1 \mid B \ B
ightarrow 1B \mid \epsilon \end{array}$



Show that if $L_1 \cup L_2$ is not context-free, then either L_1 is not context-free or L_2 is not context free.

Proof.

Show that if $L_1 \cup L_2$ is not context-free, then either L_1 is not context-free or L_2 is not context free.

Proof.

- 1. We know that if L_1 is CF and L_2 is CF, then $L_1 \cup L_2$ is CF.
- 2. Apply the contrapositive to (1) and we conclude our proof.

We know that $L_2 = \{w \mid w = a^n b^n c^n \lor |w| \text{ is even}\}$ is not context free.

Show that $L_3 = \{a^n b^n c^n \mid n \ge 0\}$ is not context-free without using the Pumping Lemma for CF or the Theorem of non-CF from Lecture 11.

Proof.

We know that $L_2 = \{w \mid w = a^n b^n c^n \lor |w| \text{ is even}\}$ is not context free. Show that $L_3 = \{a^n b^n c^n \mid n \ge 0\}$ is not context-free without using the Pumping Lemma for CF or the Theorem of non-CF from Lecture 11. **Proof.**

1. It is easy to see that $L_2 = L_3 \cup L_4$ where $L_4 = \{w \mid |w| ext{ is even}\}.$

We know that $L_2 = \{w \mid w = a^n b^n c^n \lor |w| \text{ is even}\}$ is not context free. Show that $L_3 = \{a^n b^n c^n \mid n \ge 0\}$ is not context-free without using the Pumping Lemma for CF or the Theorem of non-CF from Lecture 11. **Proof.**

1. It is easy to see that $L_2 = L_3 \cup L_4$ where $L_4 = \{w \mid \ |w| ext{ is even}\}.$

2. We apply the previous theorem of Exercise 1 and get that either L_3 is not context free, or L_4 is not-context free.

We know that $L_2 = \{w \mid w = a^n b^n c^n \lor |w| \text{ is even}\}$ is not context free. Show that $L_3 = \{a^n b^n c^n \mid n \ge 0\}$ is not context-free without using the Pumping Lemma for CF or the Theorem of non-CF from Lecture 11. **Proof.**

1. It is easy to see that $L_2 = L_3 \cup L_4$ where $L_4 = \{w \mid |w| ext{ is even}\}.$

2. We apply the previous theorem of Exercise 1 and get that either L_3 is not context free, or L_4 is not-context free.

3. But we know that L_4 is regular and therefore context-free.

We know that $L_2 = \{w \mid w = a^n b^n c^n \lor |w| \text{ is even}\}$ is not context free. Show that $L_3 = \{a^n b^n c^n \mid n \ge 0\}$ is not context-free without using the Pumping Lemma for CF or the Theorem of non-CF from Lecture 11. **Proof.**

1. It is easy to see that $L_2 = L_3 \cup L_4$ where $L_4 = \{w \mid |w| ext{ is even}\}.$

2. We apply the previous theorem of Exercise 1 and get that either L_3 is not context free, or L_4 is not-context free.

- 3. But we know that L_4 is regular and therefore context-free.
- 4. Thus, L_2 is not CF.

Turing Machine: configuration & configuration history

Turing Machines

Definition 3.3

A Turing machine is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$

- 1. Q set of states
- 2. Σ input alphabet not containing the blank symbol ${\tt _u}$
- 3. Γ the tape alphabet, where ${}_{{\scriptstyle \sf L}}\in \Gamma$ and $\Sigma\subseteq \Gamma$
- 4. $\delta: Q imes \Gamma o Q imes \Gamma imes \{\mathsf{L},\mathsf{R}\}$ transition function
- 5. $q_0 \in Q$ is the start state
- 6. q_{accept} is the accept state
- 7. q_{reject} is the reject state ($q_{reject}
 eq q_{accept}$)

To ponder..

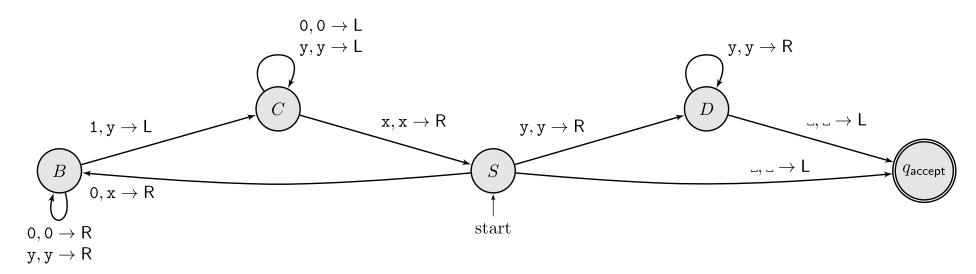
- What is the minimum number of states?
- Can the input and the tape alphabets be the same?
- Write a Turing machine with the minimum number of states that recognizes Ø
- Write a Turing machine with the minimum number of states that recognizes Σ^{\star}

Configuration

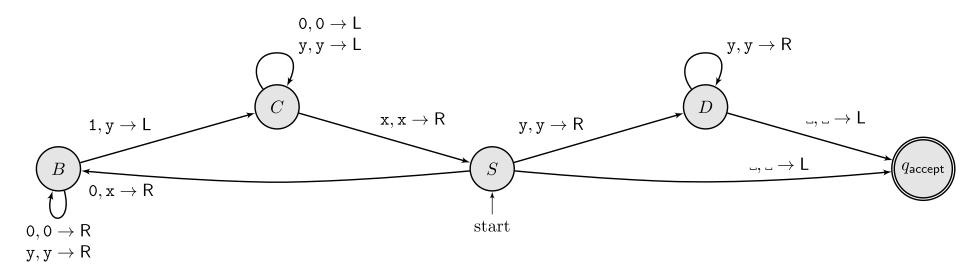
A configuration is a snapshot of a computation. That is, it contains all information necessary to resume (or replay) a computation from any point in time.

A configuration consists of

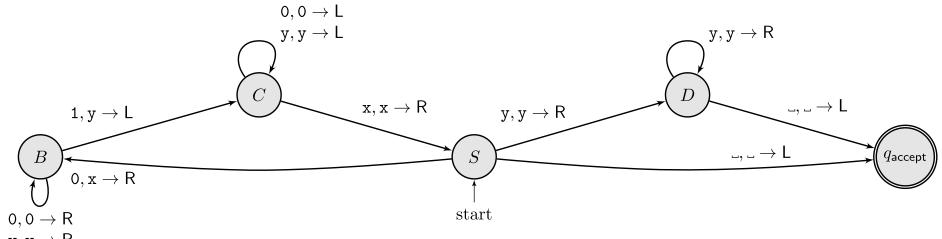
- the tape
- the head of the tape
- the current state



State	Таре
S	0011
B	X <mark>0</mark> 11
B	X0 <mark>1</mark> 1
C	X <mark>0</mark> Y1

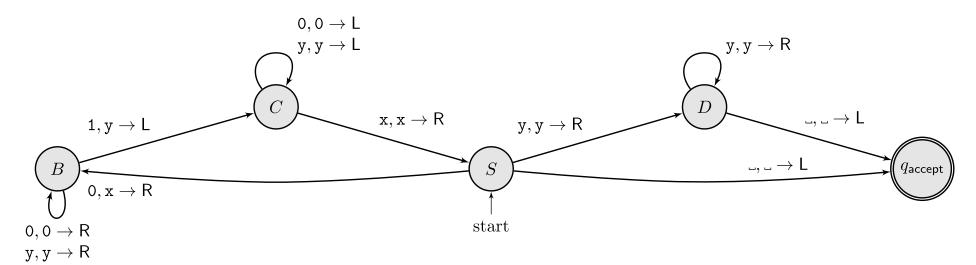


State	Таре	State	Таре
S	<mark>0</mark> 011	C	XOY1
B	X <mark>0</mark> 11	S	X <mark>0</mark> Y1
B	X0 <mark>1</mark> 1	B	XX <mark>Y</mark> 1
C	X <mark>0</mark> Y1	B	XXY <mark>1</mark>



у,	$y \rightarrow$	R
----	-----------------	---

State	Таре	State	Таре	State	Таре
S	0011	C	XOY1	C	XX <mark>Y</mark> ۱
B	X <mark>0</mark> 11	S	X <mark>0</mark> Y1	C	XXYY
B	X0 <mark>1</mark> 1	B	XX <mark>Y</mark> 1	S	XX <mark>Y</mark> Y
C	X <mark>0</mark> Y1	B	XXY <mark>1</mark>	D	XXY



	_	-		_
State	Таре		State	Таре
S	0011		C	X0Y1
B	X <mark>0</mark> 11		S	X <mark>0</mark> Y1
B	X0 <mark>1</mark> 1		В	XX <mark>Y</mark> 1
C	X <mark>0</mark> Y1		B	XXY <mark>1</mark>
		-		

CS420) Turing Machines) Lecture 20) Tiago Cogumbreiro

Example 1 configuration

State	Таре	Configuration
S	<u>0</u> 1110	S 01110
B	x <u>1</u> 110	x B 1110
B	xy <u>1</u> 10	xy B 110
B	xyy <u>1</u> 0	хуу В 10
B	xyyy <u>0</u>	хууу В 0
B	xyyyx_	хууух В

Configuration history

The configuration history (sequence of configurations), describes all configurations from the initial state until a current state.

Definition

We say that C_1 yields C_2

Example

Configuration history				
S 01110				
x B 1110				
xy B 110				
xyy B 10				
хууу В 0				
хууух В				

Acceptance

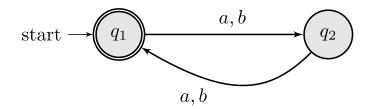
A Turing machine

- **accepts** a string if there is a configuration history that reaches the **accept** state.
- **rejects** a string if there is a configuration history that reaches the reject state.
- **rejects** a string if it never reaches an accept or reject states This means that for any configuration of any length, there is no accept nor a reject state.

The acceptance algorithm

• halts when the machine is in an accept or reject state This is different than NFAs/PDAs which can enter and leave the accept state.

Give a Turing Machine that recognizes words of an even length. NFA



TM that recognizes words of an even length

<u>(online)</u>

What language does this TM recognize? (online)

The Church-Turing thesis

Alan Turing and the Turing Machine

- No computers at the time (1936)
- Alan Turing was researching into the foundations of mathematics
- Original intent: capture all possible processes which can be carried out in computing a number[†]
- What about non-numerical problems?
- How do Turing machines capture all general and effective procedures which determine whether something is the case or not.

Section 3.3

[†]: Devise an algorithm that tests whether a polynomial has an integral root.

The Church-Turing thesis

- Any algorithm can be represented by an equivalent Turing machine
- A problem is computable if, and only if, there exists a Turing Machine that recognizes it.
- Turing Machines are equivalent to λ -terms

The Universal Turing Machine Or, How do we study the limits of computability

The Universal Turing Machine

- A Turing Machine that is capable of simulating any other Turing Machine
 - Let U be a TM.
 - Given some TM M and some input w, we can encoded as an input string, which we represent as $\langle M,w\rangle$

 $U \operatorname{accepts} \left< M, w \right> \operatorname{iff} M \operatorname{accepts} w$

Note that the Universal TM is a regular TM. This computability model is expressive enough to simulate itself.

Alan Turing's impact on modern computers

- Modern computers: von Neumann's EDVAC design
- Fundamental idea of the EDVAC design: stored-programs Manipulation of programs as data
- Universal Turing Machines pioneer the idea of stored programs

TM are used to reflect on the limits and potentials of general-purpose computers by engineers, mathematicians and logicians (Module 3)

A single machine simulates all possible machine designs!

Without this idea, computers would have limited scope.

Multi-tape Turing Machine

The TM tape only grows to the right

UMASS BOSTON

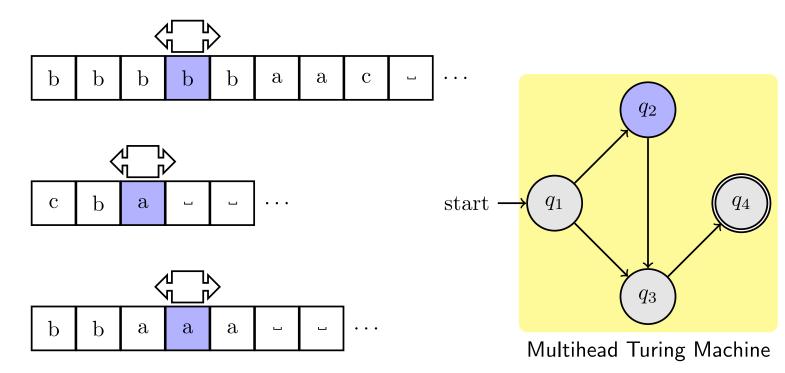
- An important thing to note is that TMs have a tape that grows only to the right
- In turingmachine.io, the tape actually grows both ways

Are Turing machines that grow both sides more expressive? Generalizing, are TM with multi-tapes more expressive?

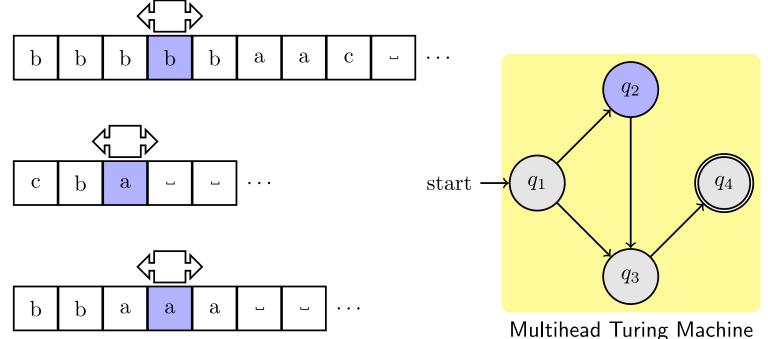
Multi-tape Turing Machine

UMASS

- A variation of the Turing Machine with multiple tapes
- The control may issue each head to move: forward, backward, or skip



Are Turing Machines less expressive than Multitape Turing Machines?



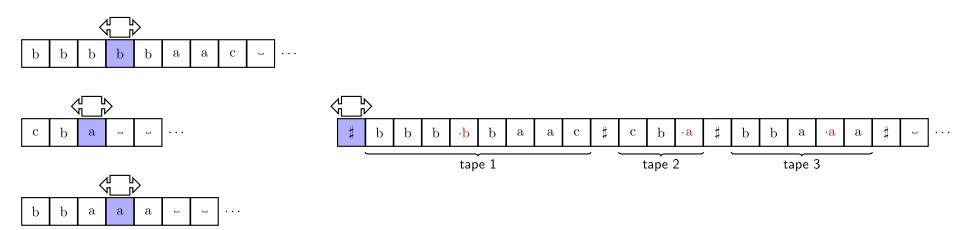
Turing Machines \iff Multitape Turing Machines

- (⇐) Multitape Turing Machines trivially recognize the same language as Turing Machine (let the number of tapes be 1)
- (\Rightarrow) How can a single tape encode multitape?

Simulating a multitape

Tape encoding

- Concatenate the three tapes together
- Delimit each tape with a character that is not in the alphabet \sharp
- "Tag" the character to encode each tape head (virtual heads), eg $\cdot a$
- The tape head always sits in the beginning of the tape



Simulating a multitape

UMAS

Operation

- To move the i-th head, read the tape from the beginning until you read \sharp a total of i times and then seek until you find the marked character
- If the virtual head *i* hits the end of the tape ♯, then shift the rest of the tape to the right and insert a blank character □

Nondeterministic Turing Machines

Nondeterministic Turing Machines (NTM)

A machine can follow more than one transitions for the same input:

$\delta \colon Q imes \Gamma o \mathcal{P}(Q imes \Gamma imes \{\mathsf{L},\mathsf{R}\})$

Consequence

Deterministic can only have one outgoing edge **per** character read, a nondeterministic machine can have multiple edges

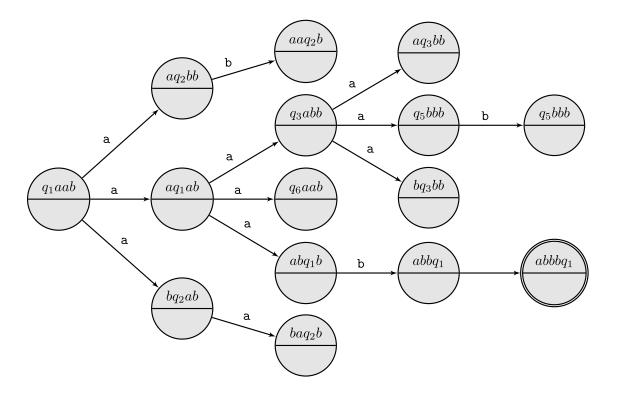
Configurations in a TM

In a deterministic TM, a configuration history is *linear*

abc q1 aac \rightarrow abcx q2 ac \rightarrow abcxa q2 c \rightarrow abcx q2 ay

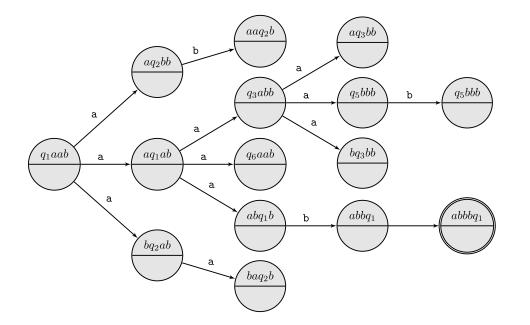
Configurations in a NTM

In a nondeterministic TM, a configuration history is a **tree**!



Nondeterministic Turing Machines

- Accept: when any branch reaches q_{accept}
- **Reject:** when **all** branches reach q_{reject}
- To find a single acceptance state we need to search the computation tree



Are Turing Machines less expressive than Nondeterministic Turing Machines?

$\mathsf{TM} \iff \mathsf{NTM}$

- Given an NTM, say N we show how to construct a TM, say D
- If N accepts on any branch, then D halts and accepts
- If N rejects on every branch, then D halts and rejects

Intuition

Simulate all branches of the computation; search for any node with an accept state.

Attention!

Question: If we are searching a search tree, and there may exist infinite branches (due to loops), how should we search the tree: DFS or BFS?

$\mathsf{TM} \iff \mathsf{NTM}$

- Given an NTM, say N we show how to construct a TM, say D
- If N accepts on any branch, then D halts and accepts
- If N rejects on every branch, then D halts and rejects

Intuition

Simulate all branches of the computation; search for any node with an accept state.

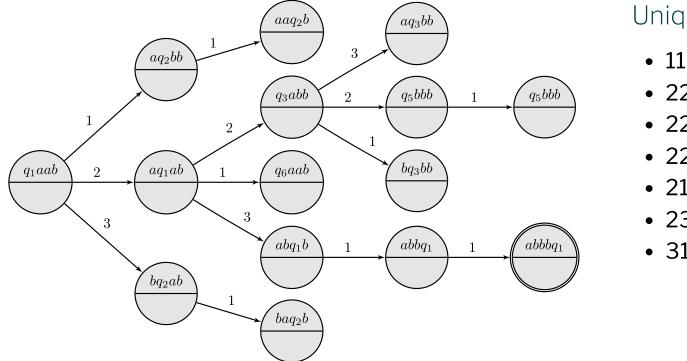
Attention!

Question: If we are searching a search tree, and there may exist infinite branches (due to loops), how should we search the tree: DFS or BFS?

Bread-First Search will ensure our search is not caught in a never-ending branch.

Addressing configuration history

• We can use a sequence of numbers to uniquely identify each node of the configuration history



Unique paths

- 223
- 2221
- 221
- 21
- 2311
- 31

BOSTON

Using a TM to simulate a NTM

Use 3 tapes

- 1. Initial input: One tape for the input
- 2. Simulation tape: Where we will be executing an address
- 3. Address tape: An ever growing number that uniquely identifies where we are in the tree

How many choices at each step?

- 1. Copy tape 1 to tape 2
- 2. Simulate TM with address from the address tape; if it reaches an accepted state, then ACCEPT, otherwise continue
- 3. Increment address (next BFS-wise) and go to 1