Today we will learn...

- Introduce irregular languages
- Intuition of the Pumping lemma
- The Pumping lemma formally
- Proving a language to be irregular (with the Pumping lemma)
- Formally proving a language to be irregular (with Coq)

Section 1.4 irregular Languages (ITC book)
What is a regular language?
What is a regular language?

Definition 1.16

We say that L_1 is regular if there exists a DFA M such that $L(M) = L_1$.
Example 1

Let N_1 be the following NFA:

Is $L(N_1)$ regular?
Example 1

Let N_1 be the following NFA:

Is $L(N_1)$ regular?

Yes. Proof: we can convert N_1 into an equivalent DFA, which then satisfies Definition 1.16.
Example 1

Let N_1 be the following NFA:

![NFA Diagram]

Is $L(N_1)$ regular?

Yes. Proof: we can convert N_1 into an equivalent DFA, which then satisfies Definition 1.16.

Theorem

We say that L_1 is regular, if there exits an NFA N such that $L(N) = L_1$
Example 2

Is $L(\{0 \cup 1^*\})$ regular?
Example 2

Is $L(0 \cup 1^*)$ regular?

Yes. Proof: We have that $L(0 \cup 1^*) = L(NFA(0 \cup 1^*))$, which is regular (from the previous theorem).
Example 2

Is $L(0 \cup 1^*)$ regular?

Yes. Proof: We have that $L(0 \cup 1^*) = L(NFA(0 \cup 1^*))$, which is regular (from the previous theorem).

Theorem

We say that L_1 is regular, if there exits a regular expression R such that $L(R) = L_1$.
What is a regular language?

1. A language is regular if there exists a DFA that recognizes it
2. A language is regular if there exists an NFA that recognizes it
3. A language is regular if there exists a Regex that recognizes it
Example

The language of strings that have a possibly empty sequence of n zeroes followed by a sequence of n ones.

$$L_4 = \{0^n1^n \mid \forall n: n \geq 0\}$$

Is this language regular?
Example

The language of strings that have a possibly empty sequence of \(n \) zeroes followed by a sequence of \(n \) ones.

\[
L_4 = \{ 0^n 1^n \mid \forall n: n \geq 0 \}
\]

Is this language \textbf{regular}?

How do we prove that a language is \textbf{not} regular?
Example

The language of strings that have a possibly empty sequence of n zeroes followed by a sequence of n ones.

$$L_4 = \{0^n1^n \mid \forall n: n \geq 0\}$$

Is this language regular?

How do we prove that a language is not regular?

The only way we know is by proving that there is no NFA/DFA/regex that can recognize such a language.
irregular languages

How do we prove that a language is not regular?
How do we prove a language is irregular?

- There are multiple ways to do it: **pumping lemma**, **Myhill–Nerode theorem**
- In this course, we will use of the pumping lemma.

Using the pumping lemma to prove irregularity
Pumping lemma

An intuition

The pumping lemma tells us that all regular languages (that have a loop) have the following characteristics:

Every word in a regular language, $w \in L$, can be partitioned into three parts $w = xyz$:

- a portion x before the first loop,
- a portion y that is one loop’s iteration (nonempty), and
- a portion z that follows the first loop

Additionally, since y is a loop, then it may be omitted or replicated as many times as we want and that word will also be in the given language, that is $xy^i z \in L$
Pumping lemma

Pictorial intuition

You: Give me any string accepted by the automaton of at least size 3.
Pumping lemma

Pictorial intuition

You: Give me any string accepted by the automaton of at least size 3.

Example: 100
Pumping lemma

Pictorial intuition

You: Give me any string accepted by the automaton of at least size 3.

Example: 100

Me: I will partition 100 into three parts $100 = xyz$ such that xy^iz is accepted for any i:

\[
\begin{align*}
\text{10} & \quad \text{0} & \quad \varepsilon \\
\text{x} & \quad \text{y} & \quad \text{z}
\end{align*}
\]

- $xz = 10 \cdot \varepsilon = 10$ is accepted
- $xyyz = 100000$ is accepted
- $xyyyyyz = 1000000$ is accepted
Pumping lemma

Pictorial intuition

You: Give me a string of size 4.
Example: 1100
Me: I will partition 1100 into three parts $1100 = xyz$ such that xy^iz is accepted for any i:

- $xz = 100$ is accepted
- $xyyz = 11100$ is accepted
- $xyyyyyz = 1111100$ is accepted
- $xyyyyyyz = 11111100$ is accepted
The Pumping Lemma, formally
Pump language

We say that \(w \) is in language \(\text{Pump}(L, p) \) if:

1. You can partition \(w \) into three sections:
 \[w = x \cdot y \cdot z \]
2. The middle section \(y \) is nonempty
3. The first two sections have at most length \(p \):
 \[|x \cdot y| \leq p \]
4. For any \(i \), we have \(x \cdot y^i \cdot z \in L \)

\[
\text{Inductive \; Pump \; L \; p \; (w:word) : \; Prop \; :=}
| \text{pump_def:}
\quad \forall x \; y \; z, \; w = x \; ++ \; y \; ++ \; z \rightarrow
\quad y \notin \; [] \rightarrow
\quad \text{length} \; (x \; ++ \; y) \leq p \rightarrow
\quad \text{(forall} \; i, \; \text{In} \; (x \; ++ \; \text{pow} \; y \; i \; ++ \; z) \; L) \rightarrow
\quad \text{Pump} \; L \; p \; w.
\]
Pumping lemma

Theorem pumping:
- \(\forall L, \) Regular \(L \rightarrow \exists p, p \geq 1 \land (\forall w, \text{In } w L \rightarrow \text{length } w \geq p \rightarrow \text{In } w (\text{Pump } L p)). \)

Intuition

Regular languages: there exists a minimum length such that every word of that length is pump-able.

1. If \(L \) is regular
2. Then, there exists some \(p \) such that
3. Any word \(w \) with at least length \(p \) is in \(\text{Pump}(L, p) \)
What about regular languages without loops?

Such languages have a maximum string length k. Pick the pumping length to be $k + 1$, now your pumping property is vacuously true.
But how do I use the pumping lemma?

Let us apply pumping to Examples.L3 = "a" \(\Rightarrow\) All \(\Rightarrow\) "b".

\[
\text{Goal exists } p : \text{nat,} \\
p \geq 1 \land \\
(\forall w : \text{word,} \\
\quad \text{In } w \text{ Examples.L3 }\Rightarrow \\
\quad \text{length } w \geq p \Rightarrow \text{In } w \text{ (Pump Examples.L3 } p)).
\]

Proof.

\text{apply (pumping _ 13_is_reg).}

Qed.
How do you use the pumping lemma?

You cannot use the result because you don't know what p is:

$H_a : p \geq 1$

$H_b : \forall w : \text{word},$

$$\text{In } w \text{ Examples.L3 } \rightarrow$$

$$\text{length } w \geq p \rightarrow \text{In } w \text{ (Pump Examples.L3 } p)$$

_______________________________(1/1)

False

How do you use assumption H_b?
We use the pumping lemma to prove irregularity

Via the contrapositive

\[\text{Goal} \ (P \rightarrow Q) \rightarrow (\sim Q \rightarrow \sim P). \]
Deriving irregularity

From the Pumping lemma

- If L regular, then pump-able, aka:
 \[
 \exists p, p \geq 1 \land (\forall w, w \in L \implies |w| \geq p \implies w \in \text{Pump}(L, p))
 \]

- Thus, if L is not pump-able, then L is not regular.

What happens next?

1. To help you prove irregularity, we will define a $\neg \text{Pump}(L, p)$ without using the negation.
2. We show you how to use $\neg \text{Pump}(L, p)$ to conclude irregularity.
What is a non-pump-able language?

The Clogs language

Language \(\text{Clogs}(L, p) \) is the reverse of \(\text{Pump}(L, p) \).

The Clogs language

Definition

\[
\text{Clogs} (L:\text{language}) p w := \\
\forall (x y z:\text{word}), \\
w = x ++ y ++ z \rightarrow \\
y <> [] \rightarrow \\
\text{length} (x ++ y) \leq p \rightarrow \\
\exists i, \\
\sim \text{In} (x ++ (\text{pow} y i) ++ z) L.
\]

Recall the Pump language

Inductive

\[
\text{Pump} L p (w:\text{word}) : \text{Prop} := \\
\mid \text{pump_def:} \\
\forall x y z, \\
w = x ++ y ++ z \rightarrow \\
y <> [] \rightarrow \\
\text{length} (x ++ y) \leq p \rightarrow \\
(\forall i, \text{In} (x ++ \text{pow} y i ++ z) L) \rightarrow \\
\text{Pump} L p w.
\]
The Clogs language

Intuition

All strings that break the pumping property for language L

Language $Clogs(L, p)$: every word that can be partitioned into three parts $w = xyz$, where $y \neq \epsilon$, and $|xy| \leq p$, and which we can conclude that $xy^i z \notin L$ for some i.

The Clogs language

Definition

$Clogs(L:language) p w :=$

forall (x y z:word),
 w = x ++ y ++ z →
 y <> [] →
 length (x ++ y) ≤ p →
 exists i,
 ~ In (x ++ (pow y i) ++ z) L.
Clogged language

We say that a language L is clogged at length p if:

1. There exists a word w of length p in L
2. And that word is in $\text{Clogs}(L, p)$

Formally

Inductive Clogged (L:language) p : Prop :=
| clogged_word:
 forall w,
 In w L →
 length w ≥ p →
 In w (Clogs L p) →
 Clogged L p.
irregular languages

If we can clog L for every length $p \geq 1$, then L is not regular.

Lemma not_regular:
\[
\forall (L:\text{language}), \quad \forall p, p \geq 1 \Rightarrow \text{Clogged } L \ p \Rightarrow \\
\neg \text{Regular } L.
\]
\{0^n1^n \mid \forall n: n \geq 0\} is irregular
Proving irregular languages

Theorem $L_1 = \{0^n1^n \mid \forall n: n \geq 0\}$ is not regular.

Proof idea

Show that we can clog L with any p.

Q: How do we show that we can clog L?

1. Pick a word w that is in L
2. Show that $|w| \geq p$ where p is unknown
3. Show that w clogs L with p.

\[
\text{Inductive } \text{Clogged (L:language) p : Prop :}
\]
\[
| \text{clogged_word:}
\forall w,
\text{In w L} \rightarrow
\text{length w} \geq p \rightarrow
\text{In w (Clogs L p)} \rightarrow
\text{Clogged L p}.
\]
How do we clog a irregular language?

Intuition

Use the pumping length to your advantage.

We have:

1. \(|w| \geq p\)
2. \(w = |xyz|\)
3. \(|xy| \leq p\)

Idea for \(L_1\)

- If we pick \(0^p1^p\), then because of (3) \(|xy| \leq p\) we get that \(y\) must consist of 0's only
- When we pump \(y\) once, thus \(xyyz\), we have more 0's than 1's
- The pumped string is no longer has the same 0's than 1's
Theorem $L_1 = \{ 0^n 1^n \mid \forall n : n \geq 0 \}$ is not regular.

Proof. We prove that the language above does not satisfy the pumping property, thus the language is not regular. Let p be the pumping length.

We pick $w = 0^p 1^p$ and must show that $clog L$:

1. $w \in \{ 0^n 1^n \mid \forall n : n \geq 0 \}$, which holds by replacing n by p.
2. $|w| \geq p$, which holds since $|w| = 2p \geq p$.
Theorem $L_1 = \{0^n1^n \mid \forall n: n \geq 0\}$ is not regular.

Proof. We prove that the language above does not satisfy the pumping property, thus the language is not regular. Let p be the pumping length.

We pick $w = 0^p1^p$ and must show that $\text{clog } L$:

1. $w \in \{0^n1^n \mid \forall n: n \geq 0\}$, which holds by replacing n by p.
2. $|w| \geq p$, which holds since $|w| = 2p \geq p$.
3. Finally, prove $w \in \text{Clogs}(L, p)$: given some x, y, z our assumptions are (H1) $w = xyz$, (H2) $|xy| \leq p$, and (H3) $|y| > 0$, we must prove that

$$\exists i, xy^iz \notin L_1$$

(We write in red what you need to prove)
Proof. (Continuation...)
Let $a + b = p$, where $xy = 0^a$ and $a, b \in \mathcal{N}_0$ (non-negative).
We can rewrite (H1) $w = xyz$ such that

$\begin{align*}
(H_1) \quad w &= 0^p 1^p = 0^a 0^b 1^{a+b} \\
x &= \underbrace{x}_{xyz} \\
y &= \underbrace{y}_{xy} \\
z &= \underbrace{z}_{a+b}
\end{align*}$
Proof. (Continuation...)
Let \(a + b = p \), where \(xy = 0^a \) and \(a, b \in \mathcal{N}_0 \) (non-negative).
We can rewrite (H1) \(w = xyz \) such that

\[
(H_1) \quad w = 0^p 1^p = 0^a 0^b 1^{a+b}
\]

Or, simply,

\[
(H_1) \quad 0^a 0^b 1^{a+b} = 0^{\lvert xy \rvert} 0^b 1^{\lvert xy \rvert + b}
\]
Proof. (Continuation...) We pick \(i = 2 \), so our goal is to show that

\[
0^{\left|x y y\right|} 0^b 1^{|x y| + b} \notin \{0^n 1^n \mid \forall n: n \geq 0\}
\]
Proof. (Continuation...) We pick $i = 2$, so our goal is to show that

$$0^{\text{xyy}}1^{\text{xy+y}} \not\in \{0^n1^n \mid \forall n: n \geq 0\}$$

Thus, it is equivalent to show that

$$|\text{xyy}| + b \neq |xy| + b$$

We can simplify it with,
Proof. (Continuation...) We pick $i = 2$, so our goal is to show that

$$0^{|xyy|}0^{|xy|+b}1^{|xy|+b} \notin \{0^n1^n \mid \forall n: n \geq 0\}$$

Thus, it is equivalent to show that

$$|xyy| + b \neq |xy| + b$$

We can simplify it with,

$$|xyy| + b - (|xy| + b) \neq |xy| + b - (|xy| + b)$$

And,

$$|y| \neq 0$$
Proof. (Continuation…) We pick $i = 2$, so our goal is to show that

$$0^{\{x y y\}} 1^{\{y + b\}} \notin \{0^n 1^n \mid \forall n : n \geq 0\}$$

Thus, it is equivalent to show that

$$|x y y| + b \neq |x y| + b$$

We can simplify it with,

$$|x y y| + b - (|x y| + b) \neq |x y| + b - (|x y| + b)$$

And,

$$|y| \neq 0$$

Which is trivially true since (H3) $|y| > 0$
\{w \mid w \text{ has as many 0's as 1's}\} \text{ is not regular}
Theorem \(\{ w \mid w \text{ has as many } 0\text{'s as } 1\text{'s}\} \) is not regular

Proof idea

1. **Adversary:** picks \(p \) such that \(p \geq 0 \)
Theorem \(\{ w \mid w \text{ has as many 0's as 1's} \} \) is not regular

Proof idea

1. **Adversary**: picks \(p \) such that \(p \geq 0 \)
2. **You**: Let us pick the same \(w \) as before

 \(0^p 1^p \in A \) and \(|w| \geq p \) (trivially holds)
Theorem \(\{w \mid w \text{ has as many 0’s as 1’s}\} \) is not regular

Proof idea

1. **Adversary**: picks \(p \) such that \(p \geq 0 \)
2. **You**: Let us pick the same \(w \) as before

 \[0^p1^p \in A \text{ and } |w| \geq p \text{ (trivially holds)} \]
3. **Adversary**: decomposes \(w \) in \(xyz \) such that:

 \[|y| > 0 \text{ and } |xy| \leq p \]
Theorem \(\{w \mid w \text{ has as many 0's as 1's} \} \) is not regular

Proof idea

1. **Adversary**: picks \(p \) such that \(p \geq 0 \)
2. **You**: Let us pick the same \(w \) as before
 \[0^p 1^p \in A \text{ and } |w| \geq p \text{ (trivially holds)} \]
3. **Adversary**: decomposes \(w \) in \(xyz \) such that:
 \[|y| > 0 \text{ and } |xy| \leq p \]
4. **You**: Let us pick \(i = 2 \):
 \[i \geq 0 \text{ (trivially holds)} \]
Theorem \(\{w \mid w \text{ has as many 0’s as 1’s} \} \) is not regular

Proof idea

1. **Adversary:** picks \(p \) such that \(p \geq 0 \)
2. **You:** Let us pick the same \(w \) as before

 \(0^p1^p \in A \) and \(|w| \geq p \) (trivially holds)
3. **Adversary:** decomposes \(w \) in \(xyz \) such that:

 \(|y| > 0 \) and \(|xy| \leq p \)
4. **You:** Let us pick \(i = 2 \):

 \(i \geq 0 \) (trivially holds)
5. **Goal:** **You:** show that \(xyyz \notin A \)

Why?

- We are responsible for picking \(w \), which is the hardest part of the problem.
- By picking \(0^p1^p \), we replicate the proof we did in the previous exercise!
Theorem $L_2 = \{w \mid w \text{ has as many 0's as 1's}\}$ is not regular

Proof. We prove that the language above does not satisfy the pumping property, thus the language is not regular. Let p be the pumping length.

1. We pick $w = 0^p1^p$ and must show that
 - $w \in L_2$, which holds since there are p 0's and p 1's.
 - $|w| \geq p$, which holds since $|w| = 2p \geq p$.

2. Finally, given some x, y, z our assumptions are (H1) $w = xyz$, (H2) $|xy| \leq p$, and (H3) $|y| > 0$, we must prove that

 $$\exists i, xy^i z \notin L_2$$

(We write in red what you need to prove)
Proof. (Continuation...)

Let \(p = a + b \) and \(|xy| = a \). We pick \(i = 2 \) and show that

\[
0^a (0^{|y|} 0^b 1^{a+b}) \notin \{w \mid \forall n: n \text{ has as many 0's as 1's}\}
\]
Proof. (Continuation...) Let $p = a + b$ and $|xy| = a$. We pick $i = 2$ and show that

$$0^a 0^{|y|} 0^b 1^{a+b} \notin \{ w \mid \forall n: n \text{ has as many 0's as 1's} \}$$

The goal below is equivalent:

$$a + |y| + b \neq a + b$$
Proof. (Continuation...) Let \(p = a + b \) and \(|x y| = a \). We pick \(i = 2 \) and show that

\[
\begin{array}{c}
0^a \ 0^{|y|} \ 0^b 1^{a+b} \\
\underbrace{x y} \underbrace{y} \underbrace{z}
\end{array}
\notin \{ w \mid \forall n: n \text{ has as many } 0\text{'s as } 1\text{'s} \}
\]

The goal below is equivalent:

\[
a + |y| + b \neq a + b
\]

And can be simplified to

\[
|y| \neq 0
\]
Proof. (Continuation...)
Let $p = a + b$ and $|xy| = a$. We pick $i = 2$ and show that

$$0^a \underbrace{0^{|y|}}_x 0^b 1^{a+b} \not\in \{w \mid \forall n: n \text{ has as many } 0\text{'s as } 1\text{'s}\}$$

The goal below is equivalent:

$$a + |y| + b \neq a + b$$

And can be simplified to

$$|y| \neq 0$$

Which is given by the hypothesis that $|y| > 0$.
\(\{0^j 1^k \mid j > k\} \) is not regular
Theorem: \(A = \{0^j1^k \mid j > k\} \) is not regular

Proof idea

1. **Adversary:** picks \(p \) such that \(p \geq 0 \)
Theorem: $A = \{0^j1^k \mid j > k\}$ is not regular

Proof idea

1. **Adversary:** picks p such that $p \geq 0$

2. **You:** Let us pick $w = 0^{p+1}1^p$

 $0^{p+1}1^p \in A$ and $|w| \geq p$ (trivially holds)

3. **Adversary:** decomposes w in xyz such that:

 $|y| > 0$ and $|xy| \leq p$
Theorem: $A = \{0^j1^k \mid j > k \}$ is not regular

Proof idea

1. **Adversary:** picks p such that $p \geq 0$
2. **You:** Let us pick $w = 0^{p+1}1^p$
 - $0^{p+1}1^p \in A$ and $|w| \geq p$ (trivially holds)
3. **Adversary:** decomposes w in xyz such that:
 - $|y| > 0$ and $|xy| \leq p$
4. **You:** Let us pick $i = 0$:
 - $i \geq 0$ (trivially holds)
5. **Goal:** **You:** show that $xz \notin A$

Why?

- Ultimately, our goal is to show that $w \notin A$, thus that the exponent of 1 smaller or equal than the exponent of 0.
- Since the loop always appears on the left-hand side of the string, we should pick the smallest exponent possible that uses p and still $w \in A$. Thus, we pick $0^{p+1}1^p$.
Proof. We prove that the language above does not satisfy the pumping property, thus the language is not regular. Let p be the pumping length.

1. We pick $w = 0^{p+1}1^p \in A$. Let $|xy| + b = p$. We have $|xy| \leq p$ and that $w = 0^{p+1}1^p$.
Proof. We prove that the language above does not satisfy the pumping property, thus the language is not regular. Let p be the pumping length.

1. We pick $w = 0^{p+1}1^p \in A$. Let $|xy| + b = p$. We have $|xy| \leq p$ and that $w = 0^{p+1}1^p$.

2. We pick $i = 0$ and show that

$$xz \notin \{0^j1^k \mid j > k\}$$
Proof. We prove that the language above does not satisfy the pumping property, thus the language is not regular. Let p be the pumping length.

1. We pick $w = 0^{p+1}1^p \in A$. Let $|xy| + b = p$. We have $|xy| \leq p$ and that $w = 0^{p+1}1^p$.

2. We pick $i = 0$ and show that $xz \notin \{0^j1^k \mid j > k\}$

3. Thus,

$$0^{|xy| - |y| + b + 1}1^{|xy| + b} \notin \{0^j1^k \mid j > k\}$$
Proof. We prove that the language above does not satisfy the pumping property, thus the language is not regular. Let p be the pumping length.

1. We pick $w = 0^{p+1}1^p \in A$. Let $|xy| + b = p$. We have $|xy| \leq p$ and that $w = 0^{p+1}1^p$.
2. We pick $i = 0$ and show that

 \[xz \notin \{0^j1^k \mid j > k\} \]

3. Thus,

 \[0^{|xy|} - |y|^+b^+1^{|xy|}+b \notin \{0^j1^k \mid j > k\} \]

4. So, we have to show that

 \[
 |xy| - |y| + b + 1 \leq |xy| + b
 \]
 \[
 |x| + 1 \leq |xy|
 \]
 \[
 |y| \geq 1 \quad \text{which holds, since } |y| > 0
 \]