CS420

Introduction to the Theory of Computation

Lecture 14: Deterministic Finite Automata

Tiago Cogumbreiro
Today we will learn...

- Deterministic Finite Automata (DFA)
- Implementing a DFA
- Converting NFAs into DFAs
- Practical applications of DFAs and NFAs
Finite Automata

a.k.a. finite state machine
A turnstile controller

Allows one-directional passage. Opens when the front sensor is triggered. It should remain open while any sensor is triggered, and then close once neither is triggered.

- **States:** open, close
- **Inputs:** front, rear, both, neither
Each state must have exactly one transition per element of the alphabet (all states must have same transition count)

In the example: Two states: open, close. State close is an accepting state. State close is also the initial state.
The controller of a turnstile

State transition

<table>
<thead>
<tr>
<th>(prev. state)</th>
<th>front</th>
<th>rear</th>
<th>both</th>
<th>neither</th>
</tr>
</thead>
<tbody>
<tr>
<td>close</td>
<td>open</td>
<td>close</td>
<td>close</td>
<td>close</td>
</tr>
<tr>
<td>open</td>
<td>open</td>
<td>open</td>
<td>open</td>
<td>close</td>
</tr>
</tbody>
</table>

```python
from enum import *

class State(Enum): Open = 0; Close = 1

class Input(Enum): Neither = 0; Front = 1; Rear = 2; Both = 3

def state_transition(old_st, i):
    if old_st == State.Close and i == Input.Front: return State.Open
    if old_st == State.Open and i == Input.Neither: return State.Close
    return old_st
```
An automaton

An automaton receives a sequence of inputs, processes them, and outputs whether it accepts the sequence.

- **Input:** a string of inputs, and an initial state
- **Output:** accept or reject

Implementation example

```python
def automaton_accepts(inputs):
    st = State.Close
    for i in inputs:
        st = state_transition(st, i)
    return st is State.Close
```
An automaton acceptance examples

```python
>>> automaton_accepts([])
True
>>> automaton_accepts([Input.Front, Input.Neither])
True
>>> automaton_accepts([Input.Rear, Input.Front, Input.Front])
False
True
```
Formal definition of a Finite Automaton

Definition 1.5

A finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\) where

1. \(Q\) is a finite set called states
2. \(\Sigma\) is a finite set called alphabet
3. \(\delta: Q \times \Sigma \to Q\) is the transition function
 \((\delta\ takes\ a\ state\ and\ an\ alphabet\ and\ produces\ a\ state)\)
4. \(q_0 \in Q\) is the start state
5. \(F \subseteq Q\) is the set of accepted states

A formal definition is a precise mathematical language. In this example, item declares a name and possibly some constraint, e.g., \(q_0 \in Q\) is saying that \(q_0\ must\ be\ in\ set\ Q\). These constraints are visible in the code in the form of assertions.
Formal declaration of our running example

Let the running example be the following finite automaton $M_{\text{turnstile}}$

$$(\{\text{Open, Close}\}, \{\text{Neither, Front, Rear, Both}\}, \delta, \text{Close}, \{\text{Close}\})$$

where

$$
\begin{align*}
\delta(\text{Close}, \text{Front}) &= \text{Open} \\
\delta(\text{Open}, \text{Neither}) &= \text{Close} \\
\delta(q,i) &= q
\end{align*}
$$

Facts

- $M_{\text{turnstile}}$ accepts [Front, Neither]
- $M_{\text{turnstile}}$ rejects [Rear, Front, Front]
- $M_{\text{turnstile}}$ accepts [Rear, Front, Rear, Neither, Rear]
Example

States?
Example

States? $Q = \{q_1, q_2, q_3\}$

Alphabet?
Example

States? $Q = \{q_1, q_2, q_3\}$
Alphabet? $\Sigma = \{0, 1\}$
Transition table δ?
Example

States? $Q = \{q_1, q_2, q_3\}$

Alphabet? $\Sigma = \{0, 1\}$

Transition table δ?

<table>
<thead>
<tr>
<th>(prev)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1</td>
<td>q_1</td>
<td>q_2</td>
</tr>
<tr>
<td>q_2</td>
<td>q_3</td>
<td>q_2</td>
</tr>
<tr>
<td>q_3</td>
<td>q_3</td>
<td>q_2</td>
</tr>
</tbody>
</table>
Example

Finite Automaton:

\[
\begin{align*}
Q &= \{q_1, q_2, q_3\} \\
\Sigma &= \{0, 1\} \\
\delta &= (\{q_1, q_2, q_3\}, \{0, 1\}, q_1, \{q_2\})
\end{align*}
\]

States? \(Q = \{q_1, q_2, q_3\} \)

Alphabet? \(\Sigma = \{0, 1\} \)

Transition table \(\delta \)?

<table>
<thead>
<tr>
<th>(prev)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_1)</td>
<td>(q_1)</td>
<td>(q_2)</td>
</tr>
<tr>
<td>(q_2)</td>
<td>(q_3)</td>
<td>(q_2)</td>
</tr>
<tr>
<td>(q_3)</td>
<td>(q_3)</td>
<td>(q_2)</td>
</tr>
</tbody>
</table>
Example

\[[1, 0, 1, 1] \]
Example

\[1, 0, 1, 1\]
Example

[1, 0, 1, 1]
Example

\[[1, 0, 1, 1] \]
Example

\[[1, 0, 1, 1] \]
What are the set of inputs accepted by this automaton?
What are the set of inputs accepted by this automaton?

Answer: Strings terminating in 1
The language of a machine

Definition: language of a machine

1. We define $L(M)$ to be the set of all strings accepted by finite automaton M.
2. Let $A = L(M)$, we say that the finite automaton M recognizes the set of strings A.
The language of a machine

Definition: language of a machine

1. We define $L(M)$ to be the set of all strings accepted by finite automaton M.
2. Let $A = L(M)$, we say that the finite automaton M recognizes the set of strings A.

Notes

- The language is the set of all possible alphabet-sequences recognized by a finite automaton
- Since $L(M)$ is a total function, then the language recognized by a machine always exists and is unique
- A language may be empty
- We cannot write a program that returns the language of an arbitrary finite automaton. Why? Because the language set may be infinite. How could a program return Σ^*?
Are all DFAs also NFAs?
Are all DFAs also NFAs?

- **Yes**, DFAs can be trivially converted into NFAs. The state diagram of a DFA is equivalent to the same state diagram as an NFA.
- We only need to slightly change the transition function to handle ϵ inputs.
Are all NFAs also DFAs?
Are all NFAs also DFAs?

Yes!
Theorem 1.39

Every NFA has an equivalent DFA

- We study the algorithm that converts an NFA into a DFA
- **Tip:** understanding the implementation of the acceptance algorithm, helps understanding the conversion and vice-versa

Intuition

- **States:**
Theorem 1.39

Every NFA has an equivalent DFA

- We study the algorithm that converts an NFA into a DFA
- **Tip:** understanding the implementation of the acceptance algorithm, helps understanding the conversion and vice-versa

Intuition

- **States:** Each state becomes a set of all possible concurrent states of the NFA
- **Alphabet:**
Theorem 1.39

Every NFA has an equivalent DFA

- We study the algorithm that converts an NFA into a DFA
- **Tip:** understanding the implementation of the acceptance algorithm, helps understanding the conversion and vice-versa

Intuition

- **States:** Each state becomes a set of all possible concurrent states of the NFA
- **Alphabet:** same alphabet
- **Initial state:**
Theorem 1.39

Every NFA has an equivalent DFA

- We study the algorithm that converts an NFA into a DFA
- **Tip:** understanding the implementation of the acceptance algorithm, helps understanding the conversion and vice-versa

Intuition

- **States:** Each state becomes a set of all possible concurrent states of the NFA
- **Alphabet:** same alphabet
- **Initial state:** The state that consists of an epsilon-step on the initial state.
- **Transition:**
Theorem 1.39

Every NFA has an equivalent DFA

- We study the algorithm that converts an NFA into a DFA
- **Tip:** understanding the implementation of the acceptance algorithm, helps understanding the conversion and vice-versa

Intuition

- **States:** Each state becomes a set of all possible concurrent states of the NFA
- **Alphabet:** same alphabet
- **Initial state:** The state that consists of an epsilon-step on the initial state.
- **Transition:** One input-step followed by one epsilon-step
Are all NFAs also DFAs?

def nfa_to_dfa(nfa):
 def transition(q, c):
 return nfa.epsilon(nfa.multi_transition(q, c))

 def accept_state(qs):
 for q in qs:
 if nfa.accepted_states(q):
 return True
 return False

 return DFA(
 nfa.alphabet,
 transition,
 nfa.epsilon({nfa.start_state}),
 accept_state)
Nondeterministic transition δ_U

$$\delta_U(R, a) = \bigcup_{q \in R} \delta(r, a)$$

```python
def multi_transition(self, states, input):
    new_states = set()
    for st in states:
        new_states.update(self.transition_func(st, input))
    return set(new_states)
```

(See Theorem 1.39; in the book δ_U is δ')
Epsilon transition

\[E(R) = \{ q \mid q \text{ can be reached from } R \text{ by travelling along 0 or more } \epsilon \text{ arrows} \} \]

```python
def epsilon(self, states):
    states = set(states)
    while True:
        count = len(states)
        states.update(self.transition(states, None))
        if count == len(states):
            return states
```

(See Theorem 1.39)
Theorem 1.39

Every NFA has an equivalent DFA

Formally, we introduce function \texttt{nfa2dfa} that converts an NFA into a DFA.

\[
\text{nfa2dfa}((Q, \Gamma, \delta, q_1, F')) = (\mathcal{P}(Q), \Gamma, \delta_D, E(q_1), F_D) \text{ where}
\]

- \[\delta_D(Q, c) = E(\delta \cup (Q, c))\]
- \[F_D = \{Q \mid Q \cap F \neq \emptyset\}\]
Deterministic Finite Automata

States Table

<table>
<thead>
<tr>
<th>States</th>
<th>Input</th>
<th>States</th>
<th>Done</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_1}</td>
<td>a</td>
<td>{q_1, q_2, q_3}</td>
<td></td>
</tr>
<tr>
<td>{q_1}</td>
<td>b</td>
<td>{q_1}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_2, q_3}</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{q_1, q_2, q_3}</td>
<td>b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram

- **States:** \{q_1, q_2, q_3\}
- **Input:** a, b
- **Done:** x
Deterministic Finite Automata

Lecture 14

<table>
<thead>
<tr>
<th>States</th>
<th>Input</th>
<th>States</th>
<th>Done</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_1}</td>
<td>a</td>
<td>{q_1, q_2, q_3}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1}</td>
<td>b</td>
<td>{q_1}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_2, q_3}</td>
<td>a</td>
<td>{q_1, q_2, q_3, q_4}</td>
<td></td>
</tr>
<tr>
<td>{q_1, q_2, q_3}</td>
<td>b</td>
<td>{q_1, q_3}</td>
<td></td>
</tr>
<tr>
<td>{q_1, q_2, q_3, q_4}</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{q_1, q_2, q_3, q_4}</td>
<td>b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{q_1, q_3}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{q_1, q_3}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>States</td>
<td>Input</td>
<td>States</td>
<td>Done</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------</td>
<td>-----------------</td>
<td>------</td>
</tr>
<tr>
<td>{q_1}</td>
<td>a</td>
<td>{q_1, q_2, q_3}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1}</td>
<td>b</td>
<td>{q_1}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_2, q_3}</td>
<td>a</td>
<td>{q_1, q_2, q_3, q_4}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_2, q_3}</td>
<td>b</td>
<td>{q_1, q_3}</td>
<td></td>
</tr>
<tr>
<td>{q_1, q_2, q_3, q_4}</td>
<td>a</td>
<td>{q_1, q_2, q_3, q_4}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_2, q_3, q_4}</td>
<td>b</td>
<td>{q_1, q_3, q_4}</td>
<td></td>
</tr>
<tr>
<td>{q_1, q_3}</td>
<td>a</td>
<td>{}</td>
<td></td>
</tr>
<tr>
<td>{q_1, q_3}</td>
<td>b</td>
<td>{}</td>
<td></td>
</tr>
<tr>
<td>{q_1, q_3, q_4}</td>
<td>a</td>
<td>{}</td>
<td></td>
</tr>
<tr>
<td>{q_1, q_3, q_4}</td>
<td>b</td>
<td>{}</td>
<td></td>
</tr>
</tbody>
</table>
Deterministic Finite Automata

Lecture 14

Tiago Cogumbreiro

<table>
<thead>
<tr>
<th>States</th>
<th>Input</th>
<th>States</th>
<th>Done</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_1}</td>
<td>a</td>
<td>{q_1, q_2, q_3}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1}</td>
<td>b</td>
<td>{q_1}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_2, q_3}</td>
<td>a</td>
<td>{q_1, q_2, q_3, q_4}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_2, q_3}</td>
<td>b</td>
<td>{q_1, q_3}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_2, q_3, q_4}</td>
<td>a</td>
<td>{q_1, q_2, q_3, q_4}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_2, q_3, q_4}</td>
<td>b</td>
<td>{q_1, q_3, q_4}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_3}</td>
<td>a</td>
<td>{q_1, q_2, q_3, q_4}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_3}</td>
<td>b</td>
<td>{q_1}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_3, q_4}</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{q_1, q_3, q_4}</td>
<td>b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of a Deterministic Finite Automaton](image)
<table>
<thead>
<tr>
<th>States</th>
<th>Input</th>
<th>States</th>
<th>Done</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_1}</td>
<td>a</td>
<td>{q_1, q_2, q_3}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1}</td>
<td>b</td>
<td>{q_1}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_2, q_3}</td>
<td>a</td>
<td>{q_1, q_2, q_3, q_4}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_2, q_3}</td>
<td>b</td>
<td>{q_1, q_3}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_2, q_3, q_4}</td>
<td>a</td>
<td>{q_1, q_2, q_3, q_4}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_2, q_3, q_4}</td>
<td>b</td>
<td>{q_1, q_3, q_4}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_3}</td>
<td>a</td>
<td>{q_1, q_2, q_3, q_4}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_3}</td>
<td>b</td>
<td>{q_1}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_3, q_4}</td>
<td>a</td>
<td>{q_1, q_2, q_3, q_4}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_3, q_4}</td>
<td>b</td>
<td>{q_1, q_4}</td>
<td></td>
</tr>
<tr>
<td>{q_1, q_4}</td>
<td>a</td>
<td>{q_1, q_4}</td>
<td></td>
</tr>
<tr>
<td>{q_1, q_4}</td>
<td>b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>States</td>
<td>Input</td>
<td>States</td>
<td>Done</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>------------</td>
<td>------</td>
</tr>
<tr>
<td>{q_1}</td>
<td>a</td>
<td>{q_1, q_2, q_3}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1}</td>
<td>b</td>
<td>{q_1}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_2, q_3}</td>
<td>a</td>
<td>{q_1, q_2, q_3, q_4}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_2, q_3}</td>
<td>b</td>
<td>{q_1, q_3}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_2, q_3, q_4}</td>
<td>a</td>
<td>{q_1, q_2, q_3, q_4}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_2, q_3, q_4}</td>
<td>b</td>
<td>{q_1, q_3, q_4}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_3}</td>
<td>a</td>
<td>{q_1, q_2, q_3, q_4}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_3}</td>
<td>b</td>
<td>{q_1}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_3, q_4}</td>
<td>a</td>
<td>{q_1, q_2, q_3, q_4}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_3, q_4}</td>
<td>b</td>
<td>{q_1, q_4}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_4}</td>
<td>a</td>
<td>{q_1, q_2, q_3, q_4}</td>
<td>x</td>
</tr>
<tr>
<td>{q_1, q_4}</td>
<td>b</td>
<td>{q_1, q_4}</td>
<td>x</td>
</tr>
</tbody>
</table>
Exercise
Producing a DFA from an NFA
Producing a DFA from an NFA

The initial state is the set of all states in the NFA that are reachable from q_1 via ϵ transitions plus q_1.
Producing a DFA from an NFA

- For each input in Σ range we must draw a transition to a target state.
- A target state is found by taking an input, say a, and doing an input+epsilon step on each sub-state.
First, input a we find all reachable states (via input+epsilon state) that start from either q_1 or q_3.

- From q_1 via a we get $\{q_1, q_2, q_3\}$
- From q_3 via a we get \emptyset
- Result state is $\{q_1, q_2, q_3\} \cup \emptyset = \{q_1, q_2, q_3\}$
Second, input b we find all reachable states (via input+epsilon state) that start from either q_1 or q_3.

- From q_1 via b we get \emptyset
- From q_3 via b we get $\{q_4\}$
- Result state is $\emptyset \cup \{q_4\} = \{q_4\}$
Producing a DFA from an NFA

For inputs a and b we find all reachable states (via input+epsilon state) that start from q_4:

- From q_4 via a we get \emptyset, so the result state is \emptyset
- From q_4 via b we get \emptyset, so the result state is \emptyset
Producing a DFA from an NFA

Transition from \(\{q_1, q_2, q_3\} \) via a?

- We know with \(\{q_1, q_3\} \) with a we reach \(\{q_1, q_2, q_3\} \)
- From \(q_2 \) with a we reach \(\{q_3\} \)
- Thus, result state is \(\{q_1, q_2, q_3\} \cup \{q_3\} = \{q_1, q_2, q_3\} \) (self-loop)
Transition from \(\{q_1, q_2, q_3\} \) via \(b \):

- We know with \(\{q_1, q_3\} \) with \(b \) we reach \(\{q_4\} \)
- From \(q_2 \) with \(b \) we reach \(\{q_2\} \)
- Thus, result state is \(\{q_4\} \cup \{q_2\} = \{q_2, q_4\} \)
Producing a DFA from an NFA

Transition from \(\{q_2, q_4\} \) via \(a \)?
- From \(q_2 \) with \(a \) we reach \(\{q_1, q_3\} \)
- From \(q_4 \) with \(a \) we reach \(\emptyset \)
- Thus, result state is \(\{q_1, q_3\} \cup \emptyset = \{q_1, q_3\} \)
Producing a DFA from an NFA

Transition from \(\{q_2, q_4\} \) via b?

- From \(q_2 \) with b we reach \(\{q_2\} \)
- From \(q_4 \) with b we reach \(\emptyset \)
- Thus, result state is \(\{q_2\} \cup \emptyset = \{q_2\} \)
Producing a DFA from an NFA

Transition from \(\{ q_2 \} \) via a?
- From \(q_2 \) with a we reach \(\{ q_1, q_3 \} \) (result state)
Producing a DFA from an NFA

Transition from \(\{q_2\} \) via \(b \)?

- From \(q_2 \) with \(b \) we reach \(\{q_2\} \) (result state; self loop)
State \emptyset (also known as \emptyset) is a **sink state**, so we draw a self loop for every input in Σ.
Applications of automaton

- DFAs are crucial to implement regular expression matching by converting
 \[\text{REGEX} \rightarrow \text{NFA} \rightarrow \text{DFA} \]
- DFAs are simple to implement and fast to run
- DFAs can be **minimized**
 Any regular language has a minimal DFA, which is defined as a DFA with the smallest number of states that recognizes that language.
Use Case 1: implementing regex

Rust standard library's regular expression implementation (source)

```rust
struct ExecReadOnly {
    /// The original regular expressions given by the caller to compile.
    res: Vec<String>,
    /// A compiled program that is used in the NFA simulation and backtracking.
    /// It can be byte-based or Unicode codepoint based.
    ///
    /// N.B. It is not possibly to make this byte-based from the public API.
    /// It is only used for testing byte based programs in the NFA simulations.
    nfa: Program,
    /// A compiled byte based program for DFA execution. This is only used
    /// if a DFA can be executed. (Currently, only word boundary assertions are
    /// not supported.) Note that this program contains an embedded `.)*`
    /// preceding the first capture group, unless the regex is anchored at the
    /// beginning.
    dfa: Program,
}```
Use Case 2: DFA/NFA

Using a DFA/NFA to structure hardware usage
Use Case 2: DFA/NFA

Using a DFA/NFA to structure hardware usage

- Arduino is an open-source hardware to design microcontrollers
- Programming can be difficult, because it is highly concurrent
- Finite-state-machines structures the logical states of the hardware
- **Input:** a string of hardware events
- String acceptance is not interesting in this domain

Example

The FSM represents the logical view of a micro-controller with a light switch
Use Case 2

Declare states

```c
#include "Fsm.h"
// Connect functions to a state
State state_light_on(on_light_on_enter, NULL, &on_light_on_exit);
// Connect functions to a state
State state_light_off(on_light_off_enter, NULL, &on_light_off_exit);
// Initial state
Fsm fsm(&state_light_off);
```

Source: platformio.org/lib/show/664/arduino-fsm
Use Case 2

Declare transitions

```c
// standard arduino functions
void setup() {
 Serial.begin(9600);

 fsm.add_transition(&state_light_on, &state_light_off, FLIP_LIGHT_SWITCH, &on_trans_light_on_light_off);
 fsm.add_transition(&state_light_off, &state_light_on, FLIP_LIGHT_SWITCH, &on_trans_light_off_light_on);
}
```

Source: platformio.org/lib/show/664/arduino-fsm
Use Case 2

Code that runs on before/after states

```c
// Transition callback functions
void on_light_on_enter() {
 Serial.println("Entering LIGHT_ON");
}

void on_light_on_exit() {
 Serial.println("Exiting LIGHT_ON");
}

void on_light_off_enter() {
 Serial.println("Entering LIGHT_OFF");
}
// ...
```

Source: platformio.org/lib/show/664/arduino-fsm