CS420

Logical Foundations of Computer Science

Lecture 6: Logical connectives

Tiago Cogumbreiro
Today we will learn...

- What are proofs?
- Logical connectives
- Inductive propositions
What are proofs?
What is a type? What is a value?

- nat is a type
What is a type? What is a value?

- nat is a type
- 5 is a value of type nat
What is a type? What is a value?

- nat is a type
- 5 is a value of type nat
- Notations 5 : nat means 5 has type nat
What is a type? What is a value?

- nat is a type
- 5 is a value of type nat
- Notations 5 : nat means 5 has type nat
- Types can be thought of as sets
 - 5 : nat a programming notation 5 ∈ \(\mathbb{N} \)
Exercise

Consider the following Coq excerpt:

```
Definition x := 5.
```

- What is x?
Exercise

Consider the following Coq excerpt:

\[
\text{Definition } x := 5. \\
\]

- What is \(x \)? A variable.
- What is the value of \(x \)?
Exercise

Consider the following Coq excerpt:

```
Definition x := 5.
```

- What is x? A variable.
- What is the value of x? 5
- What is the type of x?
Exercise

Consider the following Coq excerpt:

```coq
Definition x := 5.
```

- What is x? A variable.
- What is the value of x? 5
- What is the type of x? nat
- How do I query the type of x in Coq?
Exercise

Consider the following Coq excerpt:

Definition x := 5.

- What is x? A variable.
- What is the value of x? 5
- What is the type of x? nat
- How do I query the type of x in Coq? Using Check.
- How do I query the value of x in Coq?
Exercise

Consider the following Coq excerpt:

```coq
definition x := 5.
```

- What is x? A variable.
- What is the value of x? 5
- What is the type of x? `nat`
- How do I query the type of x in Coq? Using Check.
What is a proof? What is a proposition?

- **A proof** (or a proof object): a *completed* proof of some goal
 - usually written using tactics
 - a proof object is a *value* of a proposition
What is a proof? What is a proposition?

- **A proof** (or a proof object): a *completed* proof of some goal
 - usually written using tactics
 - a proof object is a *value* of a proposition
- **A proposition**: is a formula written in some logic
 - Propositions are of type Prop
 - You can confirm that something is a proposition using Check
What is a proof? What is a proposition?

- **A proof** (or a proof object): a *completed* proof of some goal
 - usually written using tactics
 - a proof object is a *value* of a proposition
- **A proposition**: is a formula written in some logic
 - Propositions are of type Prop
 - You can confirm that something is a proposition using Check
- **A truthful proposition**: a proposition that contains a proof
 - Proof : Proposition
 - We also say that the proposition *holds* (if there is some proof of it)
What is a proof? What is a proposition?

- **A proof** (or a proof object): a *completed* proof of some goal
 - usually written using tactics
 - a proof object is a **value** of a proposition
- **A proposition**: is a formula written in some logic
 - Propositions are of type Prop
 - You can confirm that something is a proposition using Check
- **A truthful proposition**: a proposition that contains a proof
 - Proof : Proposition
 - We also say that the proposition holds (if there is some proof of it)
- **Assumption**: a synonym of a proof
What is a proof? What is a proposition?

- **A proof** (or a proof object): a *completed* proof of some goal
 - usually written using tactics
 - a proof object is a *value* of a proposition

- **A proposition**: is a formula written in some logic
 - Propositions are of type Prop
 - You can confirm that something is a proposition using Check

- **A truthful proposition**: a proposition that contains a proof
 - Proof : Proposition
 - We also say that the proposition *holds* (if there is some proof of it)

- **Assumption**: a synonym of a proof

- **Proof state**: zero or more assumptions and 1 or more goals we need to prove
 - Each assumption is an implication to the current goal
 - Each sub-goal is a conjunctions
Exercise

- Is 10 a proposition?
Exercise

- Is 10 a proposition? No. 10 is a natural number.
- Is $2 = 2$ a proposition?
Exercise

- Is 10 a proposition? No. 10 is a natural number.
- Is $2 = 2$ a proposition? Yes.
- Is Nat.eqb 2 2 a proposition?
Exercise

- **Is 10 a proposition?** No. 10 is a natural number.
- **Is 2 = 2 a proposition?** Yes.
- **Is Nat.eqb 2 2 a proposition?** No, Nat.eqb 2 2 is an expression of type bool.
- **Is the code below a proposition?**

```coffeescript
Lemma example: 2 = 2.
Proof.
   reflexivity.
Qed.
```

No, the code above is a **proof** of formula 2 = 2.

- **What is example?**
Exercise

- Is 10 a proposition? No. 10 is a natural number.
- Is $2 = 2$ a proposition? Yes.
- Is $\text{Nat.eqb } 2 \ 2$ a proposition? No, $\text{Nat.eqb } 2 \ 2$ is an expression of type bool.
- Is the code below a proposition?

```
Lemma example: 2 = 2.
Proof.
  reflexivity.
Qed.
```

No, the code above is a **proof** of formula $2 = 2$.

- What is example? A proof of $2 = 2$.
- What is the value of example?
Exercise

- Is 10 a proposition? No. 10 is a natural number.
- Is 2 = 2 a proposition? Yes.
- Is Nat.eqb 2 2 a proposition? No, Nat.eqb 2 2 is an expression of type bool.
- Is the code below a proposition?

```coq
Lemma example: 2 = 2.
Proof.
  reflexivity.
Qed.
```

No, the code above is a proof of formula 2 = 2.

- What is example? A proof of 2 = 2.
- What is the value of example? reflexivity. (actually eq_refl)
- What is the type of example?
Exercise

- Is 10 a proposition? No. 10 is a natural number.
- Is 2 = 2 a proposition? Yes.
- Is Nat.eqb 2 2 a proposition? No, Nat.eqb 2 2 is an expression of type bool.
- Is the code below a proposition?

```
Lemma example: 2 = 2.
Proof.
  reflexivity.
Qed.
```

No, the code above is a proof of formula 2 = 2.

- What is example? A proof of 2 = 2.
- What is the value of example? reflexivity. (actually eq_refl)
- What is the type of example? 2 = 2.
- What is the type of 2 = 2?
Exercise

- Is 10 a proposition? No. 10 is a natural number.
- Is $2 = 2$ a proposition? Yes.
- Is Nat.eqb 2 2 a proposition? No, Nat.eqb 2 2 is an expression of type bool.
- Is the code below a proposition?

```latex
Lemma example: 2 = 2.
Proof.
\hspace{1em} \text{reflexivity.}
Qed.
```

No, the code above is a **proof** of formula $2 = 2$.

- What is `example`? A proof of $2 = 2$.
- What is the value of `example`? `reflexivity. (actually eq_refl)`
- What is the type of `example`? $2 = 2$.
- What is the type of $2 = 2$? Prop.
Exercise

- Is 10 a proposition? No. 10 is a natural number.
- Is 2 = 2 a proposition? Yes.
- Is Nat.eqb 2 2 a proposition? No, Nat.eqb 2 2 is an expression of type bool.
- Is the code below a proposition?

```
Lemma example: 2 = 2.
Proof.
  reflexivity.
Qed.
```

No, the code above is a proof of formula 2 = 2.

- What is example? A proof of 2 = 2.
- What is the value of example? reflexivity. (actually eq_refl)
- What is the type of example? 2 = 2.
- What is the type of 2 = 2? Prop.
Inductive propositions

We have seen how to define types inductively; propositions can also be defined inductively.

- instead of Type we use Prop
- the parameters are not just values, but propositions
- the idea is to build your logical argument as *structured data*

We will now encode various logical connectives using inductive definitions.
Conjunction

$P \land Q$
What is $P \land Q$?

1. What is the type of P?
What is $P \land Q$?

1. What is the type of P? Prop
2. What is the type of Q?
What is $P \land Q$?

1. What is the type of P? Prop
2. What is the type of Q? Prop
3. What is the type of \land?
What is $P \land Q$?

1. What is the type of P? Prop
2. What is the type of Q? Prop
3. What is the type of \land? Prop \rightarrow Prop \rightarrow Prop
What is $P \land Q$?

Let and represent \land:

\[
\text{and}: \text{Prop} \to \text{Prop} \to \text{Prop}
\]

Recall how we defined a pair:

\[
\text{Inductive pair } (X:\text{Type}) (Y:\text{Type}) : \text{Type} := \ldots
\]

How would we define and?
Conjunction

Inductive \(\text{and} (P \ Q : \text{Prop}) : \text{Prop} := \)
\[
| \text{conj} : P \rightarrow Q \rightarrow \text{and} P \ Q. \\
\]

- apply **conj** to solve a goal, **inversion** in a hypothesis
- The \(\land \) operator represents a logical conjunction (usually typeset with \(\land \))
- The split tactics is used to prove a goal of type \(\exists X \ \land \ \exists Y \), where \(\exists X \) and \(\exists Y \) are propositions

Notice that \(P \ \land \ Q \) is a type (a proposition) and that **conj** is the only constructor of that type.
Conjunction example

Example and_example : 3 + 4 = 7 ∧ 2 * 2 = 4.

Proof.
 apply conj.

(Done in class.)
Conjunction example 1

More generally, we can show that if we have propositions A and B, we can conclude that we have $A \land B$.

Goal forall A B : Prop, $A \rightarrow B \rightarrow A \land B$.
Conjunction in the hypothesis

Example and_in_conj :
forall x y,
3 + x = y /
2 * 2 = x ->
x = 4 /
y = 7.

Proof.
intros x y Hconj.
destruct Hconj as [Hleft Hright].

(Done in class.)
Lemma correct_2 : \(\forall A B : \text{Prop}, A \land B \rightarrow A.\)
Proof.

Lemma correct_3 : \(\forall A B : \text{Prop}, A \land B \rightarrow B.\)
Proof.

(Done in class.)
Disjunction

\[P \lor Q \]
What is $P \lor Q$?

1. What is the type of P?
What is $P \lor Q$?

1. What is the type of P? Prop
2. What is the type of Q?
What is $P \lor Q$?

1. What is the type of P? Prop
2. What is the type of Q? Prop
3. What is the type of \lor?
What is $P \lor Q$?

1. What is the type of P? Prop
2. What is the type of Q? Prop
3. What is the type of \lor? Prop \rightarrow Prop \rightarrow Prop

How can we define an disjunction using an inductive proposition?
Disjunction

\[\text{Inductive } or \ (A \ B : \text{Prop}) : \text{Prop} := \]
\[| \text{or_introl} : A \rightarrow or \ A \ B \]
\[| \text{or_intror} : B \rightarrow or \ A \ B \]

- apply `or_introl` or apply `or_intror` to goal; inversion to hypothesis
- The `\lor` operator represents a logical disjunction (usually typeset with `\lor`)
- The left (right) tactics are used to prove a goal of type `?X \lor ?Y`, replacing it with a new goal `?X (?Y` respectively)
Disjunction example

Theorem or_1: \(\forall A, B : \text{Prop}, \ A \to A \lor B. \)

Theorem or_2: \(\forall A, B : \text{Prop}, \ B \to A \lor B. \)

(Done in class.)
Disjunction in the hypothesis

Tactics destruct can break a disjunction into its two cases. Tactics inversion also breaks a disjunction, but leaves the original hypothesis in place.

Lemma or_example :
\[\forall n \ m : \text{nat}, \ n = 0 \lor m = 0 \rightarrow n \times m = 0. \]

Proof.
\begin{Verbatim}
intros n m Hor.
destruct Hor as [Heq | Heq].
\end{Verbatim}
Recall a proof state

1 subgoal
T : Type
x : T
P : Prop
H1 : 1 = x
H2 : P

All hypothesis are variables of a specific type, Type, or proposition
Goals are (usually) propositions
Propositions (instances of Prop) can mention values

Can a proposition mention pair, the constructor of prod? Can a proposition mention conj, the constructor of and?
Recall a proof state

1 subgoal
T : Type
x : T
P : Prop
H1 : 1 = x
H2 : P

All hypotheses are variables of a specific type, Type, or proposition.
Goals are (usually) propositions.
Propositions (instances of Prop) can mention values.

Can a proposition mention pair, the constructor of prod? Can a proposition mention conj, the constructor of and? Yes and no, respectively.
Where do constructors of propositions appear?

Theorem and_conj: \(\forall P \ Q : \text{Prop}, \ P \rightarrow Q \rightarrow P \land Q. \)

Proof.
\begin{align*}
&\text{intros } P \ Q \ H1 \ H2. \\
&\quad \text{apply conj.} \\
&\quad - \text{apply } H1. \\
&\quad - \text{apply } H2. \\
&\text{Qed.}
\end{align*}
Theorems are expressions too

Theorem \textit{and\textunderscore conj}: \[\forall P \ Q : \text{Prop},\] \[P \rightarrow Q \rightarrow P \land Q.\]

Proof.
\begin{itemize}
 \item \texttt{intros} P Q H1 H2.
 \item \texttt{apply} (conj H1 H2).
\end{itemize}
Qed.

Proposition-constructors and theorems are \textit{functions} whose parameters are \textit{evidences}.
Truth

T
Truth can be encoded in Coq as a proposition that always holds, which can be described as a proposition type with a single constructor with 0-arity.

\[
\text{Inductive } \text{True} : \text{Prop} \equiv \text{I} : \text{True}.
\]

You will note that proposition \text{True} is not a very useful one.
Truth example

Goal True.

(Done in class.)
Falsehood

⊥
So far we only seen results that are provable (eg, plus is commutative, equals is transitive)

How to encode falsehood in Coq?
Falsehood in Coq is represented by an **empty** type.

```coq
Inductive False : Prop :=.
```

- The only way to reach it is by using the exploding principle
- **No constructors available.** Thus, no way to build an inhabitant of False.
Example:

Goal 1 = 2 → False.

Goal False → 1 = 2.

Goal False.

(Done in class.)
Negation

$\neg P$
Negation

The negation of a proposition \(\neg P \) is defined as

\[
(* \text{ As defined in Coq's stdlib } *) \\
\text{Definition } \text{not } (\text{H:Prop}) := \text{H} \rightarrow \text{False}.
\]

\text{Goal } \text{not } (1 = 2).

Outputs:
1 subgoal

\[1 \leftrightarrow 2\]
\text{(Done in class.)}
Negation-related notations

- not P is the same as $\sim P$, typeset as $\neg P$
- not $(x = y)$ is the same as $x \not= y$, typeset as $x \neq y$

Can we rewrite not with an inductive proposition?